搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速磁流体力学控制霍尔效应影响

丁明松 傅杨奥骁 高铁锁 董维中 江涛 刘庆宗

引用本文:
Citation:

高超声速磁流体力学控制霍尔效应影响

丁明松, 傅杨奥骁, 高铁锁, 董维中, 江涛, 刘庆宗

Influence of Hall effect on hypersonic magnetohydrodynamic control

Ding Ming-Song, Fu Yang-Ao-Xiao, Gao Tie-Suo, Dong Wei-Zhong, Jiang Tao, Liu Qing-Zong
PDF
HTML
导出引用
  • 针对霍尔效应对高超声速磁流体力学控制的影响问题, 考虑高超声速流动过程中高温化学反应、气体分子热力学温度激发(即平动、转动、振动以及电子温度能量模态之间的激发与松弛过程)及多电离组分等离子体霍尔系数分布, 通过耦合求解各向异性霍尔电场泊松方程和带电磁源项的高温热化学非平衡流动控制方程组, 建立了高超声速流动磁流体力学控制霍尔效应数值模拟方法, 开展了多种条件下高超声速流动磁流体力学控制数值模拟, 分析了霍尔效应“漏电”与“聚集”现象原理及其对气动力/热特性的影响机制, 详细探讨了不同空域、速域和飞行器特征尺度条件下霍尔效应的作用机理和影响规律. 研究表明: 1)霍尔效应改变了流场等离子体洛伦兹力分布, 削弱了整体的力学效果, 使整体的磁阻特性降低; 2)霍尔效应对高超声速磁流体力学控制的影响, 与壁面导电性和壁面附近漏电层的“漏电”现象紧密相关, 要增强磁控效果, 必须抑制壁面附近的“漏电”现象; 3)霍尔效应对磁控热防护效果的影响较为复杂, 受“漏电”现象和电流“聚集”现象共同作用; 4)基于本文基准状态, 当高度高于67 km或速度高于5.7 km/s或特征尺度大于0.5 m时, 霍尔效应使磁控热防护效果增强, 电流“聚集”现象对气动热环境的影响占主导; 反之, 则霍尔效应使磁控热防护效果减弱, “漏电”现象对气动热环境的影响占主导.
    In this paper, the influence of Hall effect on hypersonic magnetohydrodynamic control is studied. By considering high temperature thermo-chemical reactions, the excitation of thermodynamic temperature of gas molecules, Hall coefficient distribution of various ionized components, and by solving the coupled anisotropic Possion’s equation of Hall electric field and the high temperature thermo-chemical non-equilibrium flow governing equations with electromagnetic source term, the numerical simulation method of the Hall effect on hypersonic magnetohydrodynamic (MHD) control is established, and the numerical simulation of hypersonic MHD control under various conditions is conducted, the mechanism of “leakage” and “gathering” phenomenon of Hall effect and its influence on aerodynamic force and aerothermal environment are analyzed, the mechanism and its influences of Hall effect under various flight altitudes, flight speeds and characteristic lengths are discussed in detail. The result shows that 1) Hall effect changes the Lorentz force distribution of plasma, weakens the total mechanical effect, thus lowering the total magneto-resistance effect. 2) The influence of Hall effect on hypersonic MHD control is closely related to the wall conductivity and the “leakage” phenomenon of the leakage layer near the wall. The “leakage” phenomenon must be restrained in order to enhance the magnetic control effect. 3) The influence of Hall effect on magnetic control thermal protection is complicated, which is the combined result of the “leakage” and “gathering” phenomenon. 4) Based on the normal state in this paper, when the flight altitude is higher than 67 km or the flight speed higher than 5.7 km/s or the characteristic length is bigger than 0.5 m, Hall effect can enhance the magnetic control thermal protection, and the current “gathering” phenomenon dominates the influence on aerothermal environment. On the contrary, Hall effect can weaken the effect of magnetic control thermal protection, and the “leakage” phenomenon dominates the influence on aerothermal environment.
      通信作者: 高铁锁, gaots19654@163.com
    • 基金项目: 国家重点研发计划(批准号: 2019YFA0405203)和国家数值风洞工程资助的课题
      Corresponding author: Gao Tie-Suo, gaots19654@163.com
    • Funds: Project supported by the National Key R & D Program of China (Grant No. 2019YFA0405203) and the National Numerical Wind Tunnel Project of China
    [1]

    田正雨 2008 博士学位论文 (长沙: 国防科学技术大学)

    Tian Z Y 2008 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [2]

    胡友秋, 程福臻, 刘之景 1995 电磁学 (北京: 高等教育出版社) 第288−289, 397页

    Hu Y Q, Cheng F Z, Liu Z J 1995 Electromagnetism (Beijing: Higher Education Press) pp288−289, 397 (in Chinese)

    [3]

    胡海洋, 杨云军, 周伟江 2011 力学学报 43 453Google Scholar

    Hu H Y, Yang Y J, Zhou W J 2011 Chin. J. Theor. Appl. Mech. 43 453Google Scholar

    [4]

    Borghi C A, Carraro M R, Cristofolini A 2003 34th AIAA Plasmadynamics and Lasers Conference Orlando, Florida, June 23−26, 2003 p3761

    [5]

    Otsu H 2005 36th AIAA Plasmadynamics and Lasers Conference Toronto, Ontario, Canada, June 6−9, 2005 p5049

    [6]

    Fujino T, Matsumoto Y, Kasahara J 2007 J. Spacecraft Rockets 44 626Google Scholar

    [7]

    Fujino T, Sugita H, Mizuno M 2006 J. Spacecraft Rockets 43 63Google Scholar

    [8]

    Boettcher C 2009 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference Bremen, Germany, October 19–22, 2009 AIAA2009-7254

    [9]

    Nagata Y, Otsu H, Yamada K 2012 43rd AIAA Plasmadynamics and Lasers Conference NewOrleans, Louisiana, June 25−28, 2012 p2734

    [10]

    Fujino T, Ishikawa M 2013 44th AIAA Plasmadynamics and Lasers Conference SanDiego, California, June 24−27, 2013 p3000

    [11]

    Takahashi T, Shimosawa Y, Masuda K, Fujino T 2015 46th AIAA Plasma Dynamics and Lasers Conference Dallas, Texas, June 22−26, 2015 p3365

    [12]

    Masuda K 2015 46th AIAA Plasma Dynamics and Lasers Conference Dallas, Texas, June 22—26 2015, p3366

    [13]

    吕浩宇, 李椿萱 2010 科学通报 55 1182Google Scholar

    Lü H Y, Lee C H 2010 Chin. Sci. Bull. 55 1182Google Scholar

    [14]

    李开, 柳军, 刘伟强 2017 物理学报 66 084702Google Scholar

    Li K, Liu J, Liu W Q 2017 Acta Phys. Sin. 66 084702Google Scholar

    [15]

    李开, 柳军, 刘伟强 2017 物理学报 66 054701Google Scholar

    Li K, Liu J, Liu W Q 2017 Acta Phys. Sin. 66 054701Google Scholar

    [16]

    丁明松, 江涛, 董维中, 高铁锁, 刘庆宗 2017 航空学报 38 121030Google Scholar

    Ding M S, Jiang T, Dong W Z, Gao T S, Liu Q Z 2017 Acta Aeronaut. Astronaut. Sin. 38 121030Google Scholar

    [17]

    丁明松, 江涛, 刘庆宗, 董维中, 高铁锁 2019 航空学报 40 123009Google Scholar

    Ding M S, Jiang T, Liu Q Z, Dong W Z, Gao T S 2019 Acta Aeronaut. Astronaut. Sin. 40 123009Google Scholar

    [18]

    丁明松, 江涛, 董维中, 高铁锁, 刘庆宗 2019 物理学报 68 174702Google Scholar

    Ding M S, Jiang T, Dong W Z, Gao T S, Liu Q Z 2019 Acta Phys. Sin. 68 174702Google Scholar

    [19]

    丁明松, 刘庆宗, 江涛, 董维中, 高铁锁 2020 航空学报 41 123278Google Scholar

    Ding M S, Liu Q Z, Jiang T, Dong W Z, Gao T S 2020 Acta Aeronaut. Astronaut. Sin. 41 123278Google Scholar

    [20]

    Park C 1993 J. Thermophys. Heat Transfer 7 385Google Scholar

    [21]

    董维中 1996 博士学位论文 (北京: 北京航空航天大学)

    Dong W Z 1996 Ph. D. Dissertation (Beijing: Beihang University) (in Chinese)

    [22]

    丁明松, 董维中, 高铁锁 2018 航空学报 39 121588Google Scholar

    Ding M S, Dong W Z, Gao T S 2018 Acta Aeronaut. Astronaut. Sin. 39 121588Google Scholar

    [23]

    丁明松, 董维中, 高铁锁 2017 宇航学报 38 1361Google Scholar

    Ding M S, Dong W Z, Gao T S 2017 J. Astronaut. 38 1361Google Scholar

  • 图 1  磁场配置示意图和网格无关性分析 (a)磁场配置; (b)表面压力; (c)表面热流

    Fig. 1.  Magnetic field configuration and anlysis of indepence of grids: (a) Magnetic field configuration; (b) surface pressure; (c) surface heat flux.

    图 2  不同霍尔系数条件下钝柱体气动特性 (a)轴向力系数; (b)侧向力系数

    Fig. 2.  Aerodynamic coefficent using different Hall parameter: (a) Axial force coefficent; (b) side force coefficent.

    图 3  不同条件下钝柱体表面热流 (a)本文绝缘壁; (b)文献绝缘壁[5]; (c)本文导电壁; (d)文献导电壁[5]

    Fig. 3.  Heat flux under different conditions: (a) Insulating wall of this work; (b) insulating wall[5]; (c) conductive wall of this work; (d) conductive wall[5].

    图 4  不同条件下霍尔电场分析 (a)本文结果; (b)文献结果[5]; (c)最大电势差; (d)霍尔效应示意图

    Fig. 4.  Analysis of Hall electric field under different conditions: (a) This work; (b) Ref. [5]; (c) maximum of potential difference; (d) sketch of Hall effect.

    图 5  基准状态部分流场参数分布 (a)驻点线温度; (b)表面热流

    Fig. 5.  Partical flow field parameters of refference state: (a) Temperatrue along stagnation line; (b) surface heat flux.

    图 6  基准状态环形电流和洛伦兹力矢量分布 (a) Case 2; (b) Case 3

    Fig. 6.  Annular electric current and Lorentz force: (a) Case 2; (b) Case 3

    图 7  基准状态电导率和相对霍尔系数分布 (a)$\sigma $; (b)${\beta _{\rm{e}}}$

    Fig. 7.  Distribution of electronic conductivity and Hall parameter: (a)$\sigma $; (b)${\beta _{\rm{e}}}$.

    图 8  不同飞行高度下驻点热流及其磁控效率 (a)驻点热流; (b)磁控热防护效率

    Fig. 8.  Heat flux at stagnation point and its control efficiency at different altitudes: (a) Heat flux; (b) control efficiency.

    图 9  不同飞行高度下阻力系数及其磁控效率 (a)阻力系数; (b)磁控增阻效率

    Fig. 9.  Darg coefficient and its control efficiency at different altitudes: (a) Darg coefficient; (b) control efficiency.

    图 10  不同高度下流场驻点线电导率和相对霍尔系数 (a)$\sigma $; (b)${\beta _{\rm{e}}}$

    Fig. 10.  Electronic conductivity and Hall parameter along stagnation line at different altitudes: (a)$\sigma $; (b)${\beta _{\rm{e}}}$.

    图 11  不同飞行高度下流场最大电势差和激波后较大区域的相对霍尔系数

    Fig. 11.  Potential difference maximum and Hall parameter after shock wave at different altitudes.

    图 12  不同高度下流场壁面附近电导率和相对霍尔系数 (a)$\sigma $; (b)${\beta _{\rm{e}}}$

    Fig. 12.  Electronic conductivity and Hall parameter near wall at different altitudes: (a)$\sigma $; (b)${\beta _{\rm{e}}}$.

    图 13  霍尔电场及电流流线分布 (a)绝缘壁, 飞行高度为75 km; (b)导电壁, 本文第3节状态

    Fig. 13.  Hall electric field and electric current streamline: (a) Insulating wall at 75 km; (b) conductive wall at the state of the 3rd part in this paper.

    图 14  不同飞行速度下驻点热流及其磁控效率 (a)驻点热流; (b)磁控热防护效率

    Fig. 14.  Heat flux at stagnation point and its control efficiency at different velocities: (a) Heat flux; (b) control efficiency.

    图 15  不同飞行速度下阻力系数及其磁控效率 (a)阻力系数; (b)磁控增阻效率

    Fig. 15.  Darg coefficient and its control efficiency at different velocities: (a) Darg coefficient; (b) control efficiency.

    图 16  不同速度下流场驻点线电导率和相对霍尔系数 (a) $\sigma $; (b) ${\beta _{\rm{e}}}$

    Fig. 16.  Electronic conductivity and Hall parameter along stagnation line at different velocities: (a) $\sigma $; (b) ${\beta _{\rm{e}}}$.

    图 17  不同速度下流场壁面附近电导率和相对霍尔系数 (a) $\sigma $; (b) ${\beta _{\rm{e}}}$

    Fig. 17.  Electronic conductivity and Hall parameter near wall at different velocities: (a) $\sigma $; (b) ${\beta _{\rm{e}}}$.

    图 18  不同尺度下驻点热流及其磁控效率 (a)驻点热流; (b)磁控热防护效率

    Fig. 18.  Heat flux at stagnation point and its control efficiency using different scales: (a) Heat flux; (b) control efficiency.

    图 19  不同尺度阻力系数及其磁控效率 (a)阻力系数; (b)磁控增阻效率

    Fig. 19.  Darg coefficient and its control efficiency using different scales: (a) Darg coefficient; (b) control efficiency.

    图 20  不同尺度下流场驻点线电导率和相对霍尔系数 (a) $\sigma $; (b) ${\beta _{\rm{e}}}$

    Fig. 20.  Electronic conductivity and Hall parameter along stagnation line using different scales: (a) $\sigma $; (b) ${\beta _{\rm{e}}}$.

    图 21  不同尺度下壁面附近电导率和相对霍尔系数 (a) $\sigma $; (b) ${\beta _{\rm{e}}}$

    Fig. 21.  Electronic conductivity and Hall parameter near wall using different scales: (a) $\sigma $; (b) ${\beta _{\rm{e}}}$.

    表 1  基准状态的阻力系数

    Table 1.  Drag coefficient of refference state.

    Case${C_{\rm{D}}}$${C_{{\rm{D1}}}}$${C_{{\rm{D2}}}}$磁控增阻百分比
    Case10.92390.9239
    Case21.16790.94620.221726.4%
    Case31.11670.93750.179220.9%
    下载: 导出CSV
  • [1]

    田正雨 2008 博士学位论文 (长沙: 国防科学技术大学)

    Tian Z Y 2008 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [2]

    胡友秋, 程福臻, 刘之景 1995 电磁学 (北京: 高等教育出版社) 第288−289, 397页

    Hu Y Q, Cheng F Z, Liu Z J 1995 Electromagnetism (Beijing: Higher Education Press) pp288−289, 397 (in Chinese)

    [3]

    胡海洋, 杨云军, 周伟江 2011 力学学报 43 453Google Scholar

    Hu H Y, Yang Y J, Zhou W J 2011 Chin. J. Theor. Appl. Mech. 43 453Google Scholar

    [4]

    Borghi C A, Carraro M R, Cristofolini A 2003 34th AIAA Plasmadynamics and Lasers Conference Orlando, Florida, June 23−26, 2003 p3761

    [5]

    Otsu H 2005 36th AIAA Plasmadynamics and Lasers Conference Toronto, Ontario, Canada, June 6−9, 2005 p5049

    [6]

    Fujino T, Matsumoto Y, Kasahara J 2007 J. Spacecraft Rockets 44 626Google Scholar

    [7]

    Fujino T, Sugita H, Mizuno M 2006 J. Spacecraft Rockets 43 63Google Scholar

    [8]

    Boettcher C 2009 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference Bremen, Germany, October 19–22, 2009 AIAA2009-7254

    [9]

    Nagata Y, Otsu H, Yamada K 2012 43rd AIAA Plasmadynamics and Lasers Conference NewOrleans, Louisiana, June 25−28, 2012 p2734

    [10]

    Fujino T, Ishikawa M 2013 44th AIAA Plasmadynamics and Lasers Conference SanDiego, California, June 24−27, 2013 p3000

    [11]

    Takahashi T, Shimosawa Y, Masuda K, Fujino T 2015 46th AIAA Plasma Dynamics and Lasers Conference Dallas, Texas, June 22−26, 2015 p3365

    [12]

    Masuda K 2015 46th AIAA Plasma Dynamics and Lasers Conference Dallas, Texas, June 22—26 2015, p3366

    [13]

    吕浩宇, 李椿萱 2010 科学通报 55 1182Google Scholar

    Lü H Y, Lee C H 2010 Chin. Sci. Bull. 55 1182Google Scholar

    [14]

    李开, 柳军, 刘伟强 2017 物理学报 66 084702Google Scholar

    Li K, Liu J, Liu W Q 2017 Acta Phys. Sin. 66 084702Google Scholar

    [15]

    李开, 柳军, 刘伟强 2017 物理学报 66 054701Google Scholar

    Li K, Liu J, Liu W Q 2017 Acta Phys. Sin. 66 054701Google Scholar

    [16]

    丁明松, 江涛, 董维中, 高铁锁, 刘庆宗 2017 航空学报 38 121030Google Scholar

    Ding M S, Jiang T, Dong W Z, Gao T S, Liu Q Z 2017 Acta Aeronaut. Astronaut. Sin. 38 121030Google Scholar

    [17]

    丁明松, 江涛, 刘庆宗, 董维中, 高铁锁 2019 航空学报 40 123009Google Scholar

    Ding M S, Jiang T, Liu Q Z, Dong W Z, Gao T S 2019 Acta Aeronaut. Astronaut. Sin. 40 123009Google Scholar

    [18]

    丁明松, 江涛, 董维中, 高铁锁, 刘庆宗 2019 物理学报 68 174702Google Scholar

    Ding M S, Jiang T, Dong W Z, Gao T S, Liu Q Z 2019 Acta Phys. Sin. 68 174702Google Scholar

    [19]

    丁明松, 刘庆宗, 江涛, 董维中, 高铁锁 2020 航空学报 41 123278Google Scholar

    Ding M S, Liu Q Z, Jiang T, Dong W Z, Gao T S 2020 Acta Aeronaut. Astronaut. Sin. 41 123278Google Scholar

    [20]

    Park C 1993 J. Thermophys. Heat Transfer 7 385Google Scholar

    [21]

    董维中 1996 博士学位论文 (北京: 北京航空航天大学)

    Dong W Z 1996 Ph. D. Dissertation (Beijing: Beihang University) (in Chinese)

    [22]

    丁明松, 董维中, 高铁锁 2018 航空学报 39 121588Google Scholar

    Ding M S, Dong W Z, Gao T S 2018 Acta Aeronaut. Astronaut. Sin. 39 121588Google Scholar

    [23]

    丁明松, 董维中, 高铁锁 2017 宇航学报 38 1361Google Scholar

    Ding M S, Dong W Z, Gao T S 2017 J. Astronaut. 38 1361Google Scholar

计量
  • 文章访问数:  4463
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-28
  • 修回日期:  2020-05-26
  • 上网日期:  2020-10-29
  • 刊出日期:  2020-11-05

/

返回文章
返回