搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛酸钡基/聚偏氟乙烯复合介质材料的界面改性与储能性能

王娇 刘少辉 陈长青 郝好山 翟继卫

引用本文:
Citation:

钛酸钡基/聚偏氟乙烯复合介质材料的界面改性与储能性能

王娇, 刘少辉, 陈长青, 郝好山, 翟继卫

Interface modification and energy storage properties of barium titanate-based/ polyvinylidene fluoride composite

Wang Jiao, Liu Shao-Hui, Chen Chang-Qing, Hao Hao-Shan, Zhai Ji-Wei
PDF
HTML
导出引用
  • 随着功率型电子器件设备向小型化和高性能化方向发展, 迫切需要高储能密度、高充放电效率、易加工成型、性能稳定的介质材料. 目前BaTiO3基介电陶瓷具有较高的介电常数, 但耐击穿场强低、柔性差, 而聚合物基电介质材料具有超高功能密度、超快的充放电响应时间、良好的柔韧性、高耐击穿场强、质量轻等优点, 但聚合物材料本身存在介电常数较低、极化强度低等问题, 因此导致两者储能密度较低, 限制了在小型化功率型电容器元件中的应用. 为了获得高储能性能材料, 科学家提出通过复合的方式将高介电常数无机陶瓷填料加入到聚合物中, 提高材料的储能性能, 界面在材料的性能中扮演着至关重要的角色, 本文综述了钛酸钡基/聚偏氟乙烯复合电介质材料界面设计和控制的最新研究进展. 总结了偶联剂、表面活性剂表面改性、聚合物壳层表面修饰、无机壳层表面改性、有机-无机壳层协同改性等界面改性方法对复合材料极化和储能性能的影响, 探讨了现有的界面模型与理论研究方法, 概述了存在的挑战和实际局限性, 展望了未来的研究方向.
    With the development of power electronic device equipment towards miniaturization and high performance, the dielectric materials with high energy storage density, high charge and discharge efficiency, easy processing and molding, and stable performance are urgently needed. At present, Barium titanate-based dielectric ceramics have a high dielectric constant, but low breakdown field strength and poor flexibility. Polymer-based dielectric materials have ultra-high functional density, ultra-fast charge and discharge response time, good flexibility, high breakdown field strength, light weight and other advantages, but low dielectric constant and low polarization strength. Their energy storage density is low, which limits the power capacitor component size and application scope. In order to obtain material with high energy storage performance, it was proposed to add high dielectric constant inorganic ceramic fillers to the polymer through a composite method to improve the energy storage performance of the material. The interface plays a vital role in the performance of the composite material. In this article, we review the latest research advance in the interface design and control of barium titanate/polyvinylidene fluoride composite dielectric materials. The effects of interface modification methods such as organic surface modification, inorganic functionalization and organic-inorganic synergistic modification on the polarization and energy storage performance of composite materials are summarized. The existing interface models and theoretical research methods are discussed, and the existing challenges and practical limitations, and the future research directions are prospected.
      通信作者: 王娇, wangjiao_1203@163.com ; 翟继卫, apzhai@tongji.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 51902088)和河南省科技攻关计划(批准号: 202102210002, 202102210041)资助的课题
      Corresponding author: Wang Jiao, wangjiao_1203@163.com ; Zhai Ji-Wei, apzhai@tongji.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51902088) and the Programs for Tackling Key Problems in Science and Technology of Henan Province, China (Grant Nos. 202102210002, 202102210041)
    [1]

    Guo F, Shen X, Zhou J, Liu D, Zheng Q, Yang J, Jia B, Lau A K, Kim J K 2020 Adv. Funct. Mater. 30 1910826Google Scholar

    [2]

    Zhu Y, Zhu Y, Huang X, Chen J, Li Q, He J, Jiang P 2019 Adv. Energy Mater. 9 1901826Google Scholar

    [3]

    Zhang Y, Zhang C, Feng Y, Zhang T, Chen Q, Chi Q, Liu L, Li G, Cui Y, Wang X, Dang Z, Lei Q 2019 Nano Energy 56 138Google Scholar

    [4]

    Huang X, Jiang P 2015 Adv. Mater. 27 546Google Scholar

    [5]

    Luo H, Zhou X, Ellingford C, Zhang Y, Chen S, Zhou K, Zhang D, Bowen C R, Wan C 2019 Chem. Soc. Rev. 48 4424Google Scholar

    [6]

    Liu J, Li M, Zhao Y, Zhang X, Lu J, Zhang Z 2019 J. Mater. Chem. A 7 19407Google Scholar

    [7]

    Dun C, Kuang W, Kempf N, Saeidi-Javash M, Singh D J, Zhang Y 2019 Adv. Sci. 6 1901788Google Scholar

    [8]

    Chen J, Huang X, Sun B, Jiang P 2019 ACS Nano 13 337Google Scholar

    [9]

    Bi J, Gu Y, Zhang Z, Wang S, Li M, Zhang Z 2016 Mater. Design 89 933Google Scholar

    [10]

    Dang Z M, Yuan J K, Yao S H, Liao R J 2013 Adv. Mater. 25 6334Google Scholar

    [11]

    Chu B J, Zhou X, Ren K L, Neese B, Lin M R, Wang Q, Bauer F, Zhang Q M 2006 Science 313 334Google Scholar

    [12]

    Lewis T J 2005 J. Phys. D Appl. Phys. 38 202Google Scholar

    [13]

    Dang Z M, Yu Y F, Xu H P, Bai J 2008 Compos. Sci. Technol. 68 171Google Scholar

    [14]

    Fan B H, Zha J W, Wang D R, Zhao J, Zhang Z F, Dang Z M 2013 Compos. Sci. Technol. 80 66Google Scholar

    [15]

    Zhou Z, Lin Y R, Tang H X, Sodano H A 2013 Nanotechnology 24 095602Google Scholar

    [16]

    Tang H X, Lin Y R, Andrews C, Sodano H A 2011 Nanotechnology 22 015702Google Scholar

    [17]

    Hu P H, Shen Y, Guan Y H, Zhang X H, Lin Y H, Zhang Q M, Nan C W 2014 Adv. Funct. Mater. 24 3172Google Scholar

    [18]

    Guo N, DiBenedetto S A, Tewari P, Lanagan M T, Ratner M A, Marks T J 2010 Chem. Mater. 22 1567Google Scholar

    [19]

    Dang Z M, Wang H Y, Zhang Y H, Qi J Q 2005 Macromol. Rapid Commun. 26 1185Google Scholar

    [20]

    Zhang Y, Wang Y, Deng Y, Guo Y J T, Bi W C, Li M, Luo Y, Bai J B 2012 Appl. Phys. Lett. 101 192904Google Scholar

    [21]

    Tang H X, Zhou Z, Sodano H A 2014 ACS Appl. Mater. Interfaces 6 5450Google Scholar

    [22]

    Wang Z P, Nelson J K, Miao J J, Linhardt R J, Schadler L S, Hillborg H, Zhao S 2012 IEEE Trans. Dielectr. Electr. Insul. 19 960Google Scholar

    [23]

    Wang Z P, Nelson J K, Hillborg H, Zhao S, Schadler L S 2013 Compos. Sci. Technol. 76 29Google Scholar

    [24]

    Song Y, Shen Y, Liu H Y, Lin Y H, Li M, Nan C W 2012 J. Mater. Chem. 22 8063Google Scholar

    [25]

    Song Y, Shen Y, Hu P H, Lin Y H, Li M, Nan C W 2012 Appl. Phys. Lett. 101 152904Google Scholar

    [26]

    Hu P H, Song Y, Liu H Y, Shen Y, Lin Y H, Nan C W 2013 J. Mater. Chem. A 1 1688Google Scholar

    [27]

    Tang H X, Lin Y R, Sodano H A 2012 Adv. Energy Mater. 2 469Google Scholar

    [28]

    Xie B, Zhang H, Zhang Q, Zang J, Yang C, Wang Q, Li M Y, Jiang S 2017 J. Mater. Chem. A 5 6070Google Scholar

    [29]

    Tanaka T, Kozako M, Fuse N, Ohki Y 2005 IEEE. Trans. Dielectr. Electr. Insul. 12 669Google Scholar

    [30]

    Xie L Y, Huang X Y, Wu C, Jiang P K 2011 J. Mater. Chem. 21 5897Google Scholar

    [31]

    Wu C, Huang X Y, Wu X F, Xie L Y, Yang K, Jiang P K 2013 Nanoscale 5 3847Google Scholar

    [32]

    Wu C, Huang X Y, Wang G L, Lv L B, Chen G, Li G Y, Jiang P K 2013 Adv. Funct. Mater. 23 506Google Scholar

    [33]

    Huang X Y, Zhi C Y, Jiang P K, Golberg D, Bando Y, Tanaka T 2013 Adv. Funct. Mater. 23 1824Google Scholar

    [34]

    Huang X Y, Zhi C Y, Jiang P K, Golberg D, Bando Y, Tanaka T 2012 Nanotechnology 23 455705Google Scholar

    [35]

    Liu S, Shen B, Hao H, Zhai J 2019 J. Mater. Chem. C 7 15118Google Scholar

    [36]

    Chen J, Wang Y, Yuan Q, Xu X, Niu Y, Wang Q, Wang H 2018 Nano Energy 54 288Google Scholar

    [37]

    Yao Z, Song Z, Hao H, Yu Z, Cao M, Zhang S, Lanagan M T, Liu H 2017 Adv. Mater. 29 1601727Google Scholar

    [38]

    Dang Z M, Wang H Y, Xu H P 2006 Appl. Phys. Lett. 89 112902Google Scholar

    [39]

    Xia W M, Xu Z, Wen F, Zhang Z C 2012 Ceram. Int. 38 1071Google Scholar

    [40]

    Zhou T, Zha J W, Cui R Y, Fan B H, Yuan J K, Dang Z M 2011 ACS Appl. Mater. Interfaces 3 2184Google Scholar

    [41]

    Dou X L, Liu X L, Zhang Y, Feng H, Chen J F, Du S 2009 Appl. Phys. Lett. 95 132904Google Scholar

    [42]

    Kim P, Jones S C, Hotchkiss P J, Haddock J N, Kippelen B, Marder S R, Perry J W 2007 Adv. Mater. 19 1001Google Scholar

    [43]

    Yu K, Niu Y J, Zhou Y C, Bai Y Y, Wang H 2013 J. Am. Ceram. Soc. 96 2519Google Scholar

    [44]

    Siddabattuni S, Schuman T P, Dogan F 2011 Mater. Sci. Eng. B 176 1422Google Scholar

    [45]

    Wang S, Huang X, Wang G, Wang Y, He J, Jiang P 2015 J. Phys. Chem. C 119 25307Google Scholar

    [46]

    Liu S H, Xue S X, Zhang W Q, Zhai J W, Chen G H 2014 J. Mater. Chem. A 2 18040Google Scholar

    [47]

    Liu S H, Zhai J W, Wang J W, Xue S X, Zhang W Q 2014 ACS Appl. Mater. Interfaces 6 1533Google Scholar

    [48]

    Wang D R, Bao Y R, Zha J W, Zhao J, Dang Z M, Hu G H 2012 ACS Appl. Mater. Interfaces 4 6273Google Scholar

    [49]

    Wang D R, Zhou T, Zha J W, Zhao J, Shi C Y, Dang Z M 2013 J. Mater. Chem. A 1 6162Google Scholar

    [50]

    Xie L Y, Huang X Y, Yang K, Li S T, Jiang P K 2014 J. Mater. Chem. A 2 5244Google Scholar

    [51]

    Zhu M, Huang X Y, Yang K, Zhai X, Zhang J, He J L, Jiang P K 2014 ACS Appl. Mater. Interfaces 6 19644Google Scholar

    [52]

    Yang K, Huang X Y, Huang Y H, Xie L Y, Jiang P K 2013 Chem. Mater. 25 2327Google Scholar

    [53]

    Jung H M, Kang J H, Yang S Y, Won J C, Kim Y S 2010 Chem. Mater. 22 450Google Scholar

    [54]

    Pan Z B, Yao L M, Zhai J W, Yao X, Chen H 2018 Adv. Mater. 30 1705662Google Scholar

    [55]

    Dang Z M, Zhou T, Yao S H, Yuan J K, Zha J W, Song H T, Li J Y, Chen Q, Yang W T, Bai J 2009 Adv. Mater. 21 2077Google Scholar

    [56]

    Luo B C, Wang X H, Wang Y P, Li L T 2014 J. Mater. Chem. A 2 510Google Scholar

    [57]

    Luo H, Ma C, Zhou X, Chen S, Zhang D 2017 Macromolecules 50 5132Google Scholar

    [58]

    Xu P, Zhang X Y 2011 Eur. Polym. J. 47 1031Google Scholar

    [59]

    Sencadas V, Lanceros-Mendez S, Serra R S I, Balado A A, Ribelles J L G 2012 Eur. Phys. J. E 35 1Google Scholar

    [60]

    Li Q, Yao F-Z, Liu Y, Zhang G, Wang H, Wang Q 2018 Annu. Rev. Mater. Res. 48 219Google Scholar

    [61]

    Li Q, Han K, Gadinski M R, Zhang G, Wang Q 2014 Adv. Mater. 26 6244Google Scholar

    [62]

    Li Q, Chen L, Gadinski M R, Zhang S, Zhang G, Li H, Haque A, Chen L Q, Jackson T, Wang Q 2015 Nature 523 576Google Scholar

    [63]

    Liu S, Wang J, Wang J, Shen B, Zhai J, Guo C, Zhou J 2017 Mater. Lett. 189 176Google Scholar

    [64]

    Liu S, Wang J, Shen B, Zhai J, Hao H, Zhao L 2017 J. Alloys Compd. 696 136Google Scholar

    [65]

    Liu S, Xue S, Shen B, Zhai J 2015 Appl. Phys. Lett. 107 032907Google Scholar

    [66]

    Huang J J, Zhang Y, Ma T, Li H T, Zhang L W 2010 Appl. Phys. Lett. 96 042902Google Scholar

    [67]

    Zhang Y, Huang J J, Ma T, Wang X R, Deng C S, Dai X M 2011 J. Am. Ceram. Soc. 94 1805Google Scholar

    [68]

    Luo S, Yu J, Yu S, Sun R, Cao L, Liao W H, Wong C P 2019 Adv. Energy Mater. 9 1803204Google Scholar

    [69]

    Bi K, Bi M, Hao Y, Luo W, Cai Z, Wang X, Huang Y 2018 Nano Energy 51 513Google Scholar

    [70]

    Zhou Y, Li Q, Dang B, Yang Y, Shao T, Li H, Hu J, Zeng R, He J, Wang Q 2018 Adv. Mater. 30 1805672Google Scholar

    [71]

    Zhang X, Shen Y, Xu B, Zhang Q, Gu L, Jiang J, Ma J, Lin Y, Nan C W 2016 Adv. Mater. 28 2055Google Scholar

  • 图 1  电介质薄膜电容器的主要应用

    Fig. 1.  Application of dielectric film capacitor.

    图 2  有机-无机复合材料模型

    Fig. 2.  Model of organic-inorganic composite material model.

    图 3  钛酸钡纤维串联模型与并联模型的储能密度对比图[28]

    Fig. 3.  Comparison of energy storage density of barium titanate nanofibers in series and parallel models (BTnws, BaTiO3 nanowires)[28].

    图 4  核壳结构填料合成的示意图及TEM图[51]

    Fig. 4.  Schematic diagram and TEM diagram of core-shell structure fillers[51]

    图 5  不同厚度核壳结构的Na2Ti3O7@PMPC纳米纤维[57]

    Fig. 5.  Core-shell structure Na2Ti3O7@PMPC nanofibers with different thickness[57].

    图 6  复合材料能量存储和释放的示意图 (a) 没有界面极化; (b)界面极化较强; (c) 界面极化较弱[65]

    Fig. 6.  Schematic diagram of energy storage and release of composites: (a) No interfacial polarization; (b) stronger interfacial polarization; (c) weaker interfacial polarization[65].

    图 7  复合材料的储能性能与有限元模拟结果[54]

    Fig. 7.  Energy storage performance and finite element simulation results of composite materials[54].

    图 8  钛酸钡@TiO2/聚合物复合材料储能密度与电场强度的关系[71]

    Fig. 8.  Relationship between energy storage density and electric field of BaTiO3@TiO2/polymer composites[71].

    表 1  不同聚合物介电性能、储能性能的比较

    Table 1.  Comparison of dielectric properties and energy storage properties of different polymers.

    薄膜材料1 kHz介电常数最高使用温度/℃击穿电压/kV·m–1损耗/%储能密度/J·cm–3
    聚丙烯 (PP)2.21056400 < 0.021—1.2
    聚酯 (PET)3.31255700 < 0.501—1.5
    聚碳酸酯 (PC)2.81255280 < 0.150.5—1
    聚乙烯 (PEN)3.21255500 < 0.151—1.5
    聚苯硫醚 (PPS)3.02005500 < 0.031—1.5
    聚偏氟乙烯 (PVDF)121255900 < 1.802.4
    下载: 导出CSV

    表 2  提高复合材料介电常数的方法及理论

    Table 2.  Methods and theories of improving dielectric constant of composite materials.

    理论名称渗流理论Lichtenecher模型Bruggeman模型Maxwell-Garnett模型
    公式$\begin{array}{l} {\sigma _{\rm{c}}} \propto {(f - {f_{\rm{c}}})^t} \\ {\sigma _{\rm{c}}} \propto {({f_{\rm{c}}} - f)^{ - q}} \\ \end{array} $$\varepsilon _{_{{\rm{eff}}}}^{^n} = {f_1}\varepsilon _1^n + {f_2}\varepsilon _2^n$$f\dfrac{ { {\varepsilon _1} \!-\! {\varepsilon _{ {\rm{eff} } } } } }{ {2{\varepsilon _{ {\rm{eff} } } } \!+\! 2{\varepsilon _1} } } \!+\! (1 \!-\! f)\dfrac{ { {\varepsilon _2} \!-\! {\varepsilon _{ {\rm{eff} } } } } }{ { {\varepsilon _{ {\rm{eff} } } } \!+\! 2{\varepsilon _2} } } \!=\! 0$$\dfrac{ { {\varepsilon _{ {\rm{eff} } } } - {\varepsilon _1} } }{ { {\varepsilon _{ {\rm{eff} } } } + 2{\varepsilon _1} } } = f\dfrac{ { {\varepsilon _1} - {\varepsilon _2} } }{ { {\varepsilon _1} + 2{\varepsilon _2} } }$
    字母的
    含义
    ${f_{\rm{c}}}$表示渗流阈值,
    ${\sigma _{\rm{c}}}$为电导率, tq
    别为临界参数
    ${\varepsilon _{{\rm{eff}}}}$为复合材料的介电常数,
    ${\varepsilon _1}$为基相的介电常数,
    ${\varepsilon _2}$为分散相的介电常数,
    ${f_2}$为填料的体积分数,
    n = 1, –1, 0
    ${\varepsilon _{{\rm{eff}}}}$为复合材料的介电常数,
    ${\varepsilon _1}$, ${\varepsilon _2}$分别为填料和基体的介
    电常数, $f$为填料的体积分数
    ${\varepsilon _{{\rm{eff}}}}$为复合材料的介电常数,
    ${\varepsilon _1}$, ${\varepsilon _2}$分别为填料和基体的介
    电常数, $f$为填料的体积分数
    适用条件将体系的微观结构与
    宏观性能联系起来
    可以判断两材料复合并
    联或者串联模型
    可以成功解释复合材料由
    绝缘体向导体的转变
    可以模拟两种绝缘体构成
    的复合材料的介电常数
    不足之处影响渗流值的因素众多,
    如填料的尺寸、形貌等
    填料含量较高时, 利用此模型
    与测量值有明显的差距.
    仅当填料浓度小于渗
    流阈值时公式才成立
    没有考虑到填料相的电阻率,
    预测的介电常数值比实际值大
    下载: 导出CSV
  • [1]

    Guo F, Shen X, Zhou J, Liu D, Zheng Q, Yang J, Jia B, Lau A K, Kim J K 2020 Adv. Funct. Mater. 30 1910826Google Scholar

    [2]

    Zhu Y, Zhu Y, Huang X, Chen J, Li Q, He J, Jiang P 2019 Adv. Energy Mater. 9 1901826Google Scholar

    [3]

    Zhang Y, Zhang C, Feng Y, Zhang T, Chen Q, Chi Q, Liu L, Li G, Cui Y, Wang X, Dang Z, Lei Q 2019 Nano Energy 56 138Google Scholar

    [4]

    Huang X, Jiang P 2015 Adv. Mater. 27 546Google Scholar

    [5]

    Luo H, Zhou X, Ellingford C, Zhang Y, Chen S, Zhou K, Zhang D, Bowen C R, Wan C 2019 Chem. Soc. Rev. 48 4424Google Scholar

    [6]

    Liu J, Li M, Zhao Y, Zhang X, Lu J, Zhang Z 2019 J. Mater. Chem. A 7 19407Google Scholar

    [7]

    Dun C, Kuang W, Kempf N, Saeidi-Javash M, Singh D J, Zhang Y 2019 Adv. Sci. 6 1901788Google Scholar

    [8]

    Chen J, Huang X, Sun B, Jiang P 2019 ACS Nano 13 337Google Scholar

    [9]

    Bi J, Gu Y, Zhang Z, Wang S, Li M, Zhang Z 2016 Mater. Design 89 933Google Scholar

    [10]

    Dang Z M, Yuan J K, Yao S H, Liao R J 2013 Adv. Mater. 25 6334Google Scholar

    [11]

    Chu B J, Zhou X, Ren K L, Neese B, Lin M R, Wang Q, Bauer F, Zhang Q M 2006 Science 313 334Google Scholar

    [12]

    Lewis T J 2005 J. Phys. D Appl. Phys. 38 202Google Scholar

    [13]

    Dang Z M, Yu Y F, Xu H P, Bai J 2008 Compos. Sci. Technol. 68 171Google Scholar

    [14]

    Fan B H, Zha J W, Wang D R, Zhao J, Zhang Z F, Dang Z M 2013 Compos. Sci. Technol. 80 66Google Scholar

    [15]

    Zhou Z, Lin Y R, Tang H X, Sodano H A 2013 Nanotechnology 24 095602Google Scholar

    [16]

    Tang H X, Lin Y R, Andrews C, Sodano H A 2011 Nanotechnology 22 015702Google Scholar

    [17]

    Hu P H, Shen Y, Guan Y H, Zhang X H, Lin Y H, Zhang Q M, Nan C W 2014 Adv. Funct. Mater. 24 3172Google Scholar

    [18]

    Guo N, DiBenedetto S A, Tewari P, Lanagan M T, Ratner M A, Marks T J 2010 Chem. Mater. 22 1567Google Scholar

    [19]

    Dang Z M, Wang H Y, Zhang Y H, Qi J Q 2005 Macromol. Rapid Commun. 26 1185Google Scholar

    [20]

    Zhang Y, Wang Y, Deng Y, Guo Y J T, Bi W C, Li M, Luo Y, Bai J B 2012 Appl. Phys. Lett. 101 192904Google Scholar

    [21]

    Tang H X, Zhou Z, Sodano H A 2014 ACS Appl. Mater. Interfaces 6 5450Google Scholar

    [22]

    Wang Z P, Nelson J K, Miao J J, Linhardt R J, Schadler L S, Hillborg H, Zhao S 2012 IEEE Trans. Dielectr. Electr. Insul. 19 960Google Scholar

    [23]

    Wang Z P, Nelson J K, Hillborg H, Zhao S, Schadler L S 2013 Compos. Sci. Technol. 76 29Google Scholar

    [24]

    Song Y, Shen Y, Liu H Y, Lin Y H, Li M, Nan C W 2012 J. Mater. Chem. 22 8063Google Scholar

    [25]

    Song Y, Shen Y, Hu P H, Lin Y H, Li M, Nan C W 2012 Appl. Phys. Lett. 101 152904Google Scholar

    [26]

    Hu P H, Song Y, Liu H Y, Shen Y, Lin Y H, Nan C W 2013 J. Mater. Chem. A 1 1688Google Scholar

    [27]

    Tang H X, Lin Y R, Sodano H A 2012 Adv. Energy Mater. 2 469Google Scholar

    [28]

    Xie B, Zhang H, Zhang Q, Zang J, Yang C, Wang Q, Li M Y, Jiang S 2017 J. Mater. Chem. A 5 6070Google Scholar

    [29]

    Tanaka T, Kozako M, Fuse N, Ohki Y 2005 IEEE. Trans. Dielectr. Electr. Insul. 12 669Google Scholar

    [30]

    Xie L Y, Huang X Y, Wu C, Jiang P K 2011 J. Mater. Chem. 21 5897Google Scholar

    [31]

    Wu C, Huang X Y, Wu X F, Xie L Y, Yang K, Jiang P K 2013 Nanoscale 5 3847Google Scholar

    [32]

    Wu C, Huang X Y, Wang G L, Lv L B, Chen G, Li G Y, Jiang P K 2013 Adv. Funct. Mater. 23 506Google Scholar

    [33]

    Huang X Y, Zhi C Y, Jiang P K, Golberg D, Bando Y, Tanaka T 2013 Adv. Funct. Mater. 23 1824Google Scholar

    [34]

    Huang X Y, Zhi C Y, Jiang P K, Golberg D, Bando Y, Tanaka T 2012 Nanotechnology 23 455705Google Scholar

    [35]

    Liu S, Shen B, Hao H, Zhai J 2019 J. Mater. Chem. C 7 15118Google Scholar

    [36]

    Chen J, Wang Y, Yuan Q, Xu X, Niu Y, Wang Q, Wang H 2018 Nano Energy 54 288Google Scholar

    [37]

    Yao Z, Song Z, Hao H, Yu Z, Cao M, Zhang S, Lanagan M T, Liu H 2017 Adv. Mater. 29 1601727Google Scholar

    [38]

    Dang Z M, Wang H Y, Xu H P 2006 Appl. Phys. Lett. 89 112902Google Scholar

    [39]

    Xia W M, Xu Z, Wen F, Zhang Z C 2012 Ceram. Int. 38 1071Google Scholar

    [40]

    Zhou T, Zha J W, Cui R Y, Fan B H, Yuan J K, Dang Z M 2011 ACS Appl. Mater. Interfaces 3 2184Google Scholar

    [41]

    Dou X L, Liu X L, Zhang Y, Feng H, Chen J F, Du S 2009 Appl. Phys. Lett. 95 132904Google Scholar

    [42]

    Kim P, Jones S C, Hotchkiss P J, Haddock J N, Kippelen B, Marder S R, Perry J W 2007 Adv. Mater. 19 1001Google Scholar

    [43]

    Yu K, Niu Y J, Zhou Y C, Bai Y Y, Wang H 2013 J. Am. Ceram. Soc. 96 2519Google Scholar

    [44]

    Siddabattuni S, Schuman T P, Dogan F 2011 Mater. Sci. Eng. B 176 1422Google Scholar

    [45]

    Wang S, Huang X, Wang G, Wang Y, He J, Jiang P 2015 J. Phys. Chem. C 119 25307Google Scholar

    [46]

    Liu S H, Xue S X, Zhang W Q, Zhai J W, Chen G H 2014 J. Mater. Chem. A 2 18040Google Scholar

    [47]

    Liu S H, Zhai J W, Wang J W, Xue S X, Zhang W Q 2014 ACS Appl. Mater. Interfaces 6 1533Google Scholar

    [48]

    Wang D R, Bao Y R, Zha J W, Zhao J, Dang Z M, Hu G H 2012 ACS Appl. Mater. Interfaces 4 6273Google Scholar

    [49]

    Wang D R, Zhou T, Zha J W, Zhao J, Shi C Y, Dang Z M 2013 J. Mater. Chem. A 1 6162Google Scholar

    [50]

    Xie L Y, Huang X Y, Yang K, Li S T, Jiang P K 2014 J. Mater. Chem. A 2 5244Google Scholar

    [51]

    Zhu M, Huang X Y, Yang K, Zhai X, Zhang J, He J L, Jiang P K 2014 ACS Appl. Mater. Interfaces 6 19644Google Scholar

    [52]

    Yang K, Huang X Y, Huang Y H, Xie L Y, Jiang P K 2013 Chem. Mater. 25 2327Google Scholar

    [53]

    Jung H M, Kang J H, Yang S Y, Won J C, Kim Y S 2010 Chem. Mater. 22 450Google Scholar

    [54]

    Pan Z B, Yao L M, Zhai J W, Yao X, Chen H 2018 Adv. Mater. 30 1705662Google Scholar

    [55]

    Dang Z M, Zhou T, Yao S H, Yuan J K, Zha J W, Song H T, Li J Y, Chen Q, Yang W T, Bai J 2009 Adv. Mater. 21 2077Google Scholar

    [56]

    Luo B C, Wang X H, Wang Y P, Li L T 2014 J. Mater. Chem. A 2 510Google Scholar

    [57]

    Luo H, Ma C, Zhou X, Chen S, Zhang D 2017 Macromolecules 50 5132Google Scholar

    [58]

    Xu P, Zhang X Y 2011 Eur. Polym. J. 47 1031Google Scholar

    [59]

    Sencadas V, Lanceros-Mendez S, Serra R S I, Balado A A, Ribelles J L G 2012 Eur. Phys. J. E 35 1Google Scholar

    [60]

    Li Q, Yao F-Z, Liu Y, Zhang G, Wang H, Wang Q 2018 Annu. Rev. Mater. Res. 48 219Google Scholar

    [61]

    Li Q, Han K, Gadinski M R, Zhang G, Wang Q 2014 Adv. Mater. 26 6244Google Scholar

    [62]

    Li Q, Chen L, Gadinski M R, Zhang S, Zhang G, Li H, Haque A, Chen L Q, Jackson T, Wang Q 2015 Nature 523 576Google Scholar

    [63]

    Liu S, Wang J, Wang J, Shen B, Zhai J, Guo C, Zhou J 2017 Mater. Lett. 189 176Google Scholar

    [64]

    Liu S, Wang J, Shen B, Zhai J, Hao H, Zhao L 2017 J. Alloys Compd. 696 136Google Scholar

    [65]

    Liu S, Xue S, Shen B, Zhai J 2015 Appl. Phys. Lett. 107 032907Google Scholar

    [66]

    Huang J J, Zhang Y, Ma T, Li H T, Zhang L W 2010 Appl. Phys. Lett. 96 042902Google Scholar

    [67]

    Zhang Y, Huang J J, Ma T, Wang X R, Deng C S, Dai X M 2011 J. Am. Ceram. Soc. 94 1805Google Scholar

    [68]

    Luo S, Yu J, Yu S, Sun R, Cao L, Liao W H, Wong C P 2019 Adv. Energy Mater. 9 1803204Google Scholar

    [69]

    Bi K, Bi M, Hao Y, Luo W, Cai Z, Wang X, Huang Y 2018 Nano Energy 51 513Google Scholar

    [70]

    Zhou Y, Li Q, Dang B, Yang Y, Shao T, Li H, Hu J, Zeng R, He J, Wang Q 2018 Adv. Mater. 30 1805672Google Scholar

    [71]

    Zhang X, Shen Y, Xu B, Zhang Q, Gu L, Jiang J, Ma J, Lin Y, Nan C W 2016 Adv. Mater. 28 2055Google Scholar

  • [1] 宋小凡, 闵道敏, 高梓巍, 王泊心, 郝予涛, 高景晖, 钟力生. 聚醚酰亚胺纳米复合电介质中指数分布陷阱电荷跳跃输运对储能性能的影响. 物理学报, 2024, 73(2): 027301. doi: 10.7498/aps.73.20230556
    [2] 查俊伟, 查磊军, 郑明胜. 聚偏氟乙烯基复合材料储能特性优化策略. 物理学报, 2023, 72(1): 018401. doi: 10.7498/aps.72.20222012
    [3] 梁帅博, 袁涛, 邱扬, 张震, 妙亚宁, 韩竞峰, 刘秀童, 姚春丽. 钛酸钡介电调控提升纸基摩擦纳米发电机输出性能. 物理学报, 2022, 71(7): 077701. doi: 10.7498/aps.71.20212022
    [4] 周海涛, 熊希雅, 罗飞, 罗炳威, 刘大博, 申承民. 原位生长技术制备石墨烯强化铜基复合材料. 物理学报, 2021, 70(8): 086201. doi: 10.7498/aps.70.20201943
    [5] 赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣. 等离子体对石墨烯的功能化改性. 物理学报, 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [6] 沈忠慧, 江彦达, 李宝文, 张鑫. 高储能密度铁电聚合物纳米复合材料研究进展. 物理学报, 2020, 69(21): 217706. doi: 10.7498/aps.69.20201209
    [7] 王娇, 刘少辉, 周梦, 郝好山, 翟继卫. 钛酸锶纳米纤维表面羟基化处理对聚偏氟乙烯复合材料介电性能和储能性能的影响. 物理学报, 2020, 69(21): 218101. doi: 10.7498/aps.69.20200592
    [8] 景奇, 李晓娟. 多孔钛酸钡陶瓷制备及其增强的压电灵敏性. 物理学报, 2019, 68(5): 057701. doi: 10.7498/aps.68.20181790
    [9] 孙智征, 荀威, 张加永, 刘传洋, 仲嘉霖, 吴银忠. 钛酸钡的光学性质及其体积效应. 物理学报, 2019, 68(8): 087801. doi: 10.7498/aps.68.20182087
    [10] 李宗宝, 王霞, 周瑞雪, 王应, 李勇. Cu-Ag协同表面改性TiO2的第一性原理研究. 物理学报, 2017, 66(11): 117101. doi: 10.7498/aps.66.117101
    [11] 张源, 高雁军, 胡诚, 谭兴毅, 邱达, 张婷婷, 朱永丹, 李美亚. 磁铁/压电双晶片复合材料磁电耦合性能的优化设计. 物理学报, 2016, 65(16): 167501. doi: 10.7498/aps.65.167501
    [12] 杨金, 周茂秀, 徐太龙, 代月花, 汪家余, 罗京, 许会芳, 蒋先伟, 陈军宁. 阻变存储器复合材料界面及电极性质研究. 物理学报, 2013, 62(24): 248501. doi: 10.7498/aps.62.248501
    [13] 李振武. 纳米CdS/碳纳米管复合材料的光电特性. 物理学报, 2012, 61(1): 016103. doi: 10.7498/aps.61.016103
    [14] 霍雁, 张存林. 碳纤维复合材料内部缺陷深度的定量红外检测. 物理学报, 2012, 61(14): 144204. doi: 10.7498/aps.61.144204
    [15] 倪建刚, 刘 诺, 杨果来, 张 曦. 第一性原理研究BaTiO3(001)表面的电子结构. 物理学报, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [16] 顾伟超, 吕国华, 陈 睆, 陈光良, 冯文然, 张谷令, 杨思泽. 管状铝质材料的等离子体电解沉积行为研究. 物理学报, 2007, 56(4): 2337-2341. doi: 10.7498/aps.56.2337
    [17] 王培吉, 周忠祥, 苏 燕, 荣振宇, 赵 朋, 张奉军. 钽掺杂对钛酸钡导热性能影响的研究. 物理学报, 2006, 55(4): 1959-1964. doi: 10.7498/aps.55.1959
    [18] 崔永锋, 袁志好. 表面修饰的二氧化钛纳米材料的结构相变和光吸收性质. 物理学报, 2006, 55(10): 5172-5177. doi: 10.7498/aps.55.5172
    [19] 满宝元, 张运海, 吕国华, 刘爱华, 张庆刚, L. Guzman, M. Adami, A. Miotello. N+离子注入聚四氟乙烯表面改性研究. 物理学报, 2005, 54(2): 837-841. doi: 10.7498/aps.54.837
    [20] 陈传盛, 陈小华, 李学谦, 张 刚, 易国军, 张 华, 胡 静. 碳纳米管增强镍磷基复合镀层研究. 物理学报, 2004, 53(2): 531-536. doi: 10.7498/aps.53.531
计量
  • 文章访问数:  8699
  • PDF下载量:  408
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-30
  • 修回日期:  2020-09-25
  • 上网日期:  2020-11-03
  • 刊出日期:  2020-11-05

/

返回文章
返回