搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过渡金属原子掺杂的锯齿型磷烯纳米带的磁电子学特性

张华林 何鑫 张振华

引用本文:
Citation:

过渡金属原子掺杂的锯齿型磷烯纳米带的磁电子学特性

张华林, 何鑫, 张振华

Magneto-electronic property in zigzag phosphorene nanoribbons doped with transition metal atom

Zhang Hua-Lin, He Xin, Zhang Zhen-Hua
PDF
HTML
导出引用
  • 利用基于密度泛函理论的第一性原理方法, 研究了掺杂铁、钴和镍原子的锯齿型磷烯纳米带(ZPNR)的磁电子学特性. 研究表明, 掺杂和未掺杂ZPNR的结构都是稳定的. 当处于非磁态时, 未掺杂和掺杂钴原子的ZPNR为半导体, 而掺杂铁或者镍原子的ZPNR为金属. 自旋极化计算表明, 未掺杂和掺杂钴原子的ZPNR无磁性, 而掺杂铁或者镍原子的ZPNR有磁性, 但只能表现出铁磁性. 处于铁磁态时, 掺杂铁原子的ZPNR为磁性半导体, 而掺杂镍原子的ZPNR为磁性半金属. 掺杂铁或者镍原子的ZPNR的磁性主要由杂质原子贡献, 产生磁性的原因则是在ZPNR中存在未配对电子. 掺杂位置对ZPNR的磁电子学特性有一定的影响. 该研究对于发展基于磷烯纳米带的纳米电子器件具有重要意义.
    The magneto-electronic properties of zigzag phosphorene nanoribbons (ZPNRs) doped, respectively, with iron (Fe), cobalt (Co) and nickel (Ni) atoms are investigated by the first-principles method based on density functional theory. The calculated results show that the structures of doped and undoped ZPNR are stable because their binding energy and Gibbs free energy are negative, and the Forcite annealing dynamics simulation shows that the thermal stabilities of all doped ZPNRs are extremely high. The ground states of pristine ZPNRs and ZPNRs doped with Co atoms are nonmagnetic states, while the ground states of ZPNRs doped with Fe or Ni atoms are ferromagnetic states. When they are in the nonmagnetic states, the pristine ZPNRs and ZPNRs doped with Co atoms turn into semiconductors, while the ZPNRs doped with Fe or Ni atoms become metals. The undoped ZPNRs are direct band gap semiconductors, while the ZPNRs doped with Co atoms are indirect band gap semiconductors, and the band gaps of the latter are smaller than those of the former. The changes of the properties of the ZPNRs are due to the introduction of impurity energy band into the energy band structures. The spin-polarized calculation displays that the pristine ZPNRs and ZPNRs doped with Co atoms are non-magnetic, and the ZPNRs doped with Fe or Ni atoms are magnetic but only in the ferromagnetic state. In the ferromagnetic state, the ZPNRs doped with Fe atoms are spin semiconductors, while the ZPNR doped with Ni atoms are spin half-metals. This means that the half-metal feature can be realized by doping Ni atom into ZPNR. The magnetism of ZPNRs doped with Fe or Ni atoms is mainly contributed by impurity atoms, and the occurrence of magnetism is due to the existence of unpaired electrons in ZPNR. The doping position has a certain influence on the electromagnetic properties of ZPNR. In the ferromagnetic state, the ZPNRs are half-metals when the Ni atoms are doped near the edge of the nanoribbons, while the ZPNRs are spin semiconductors as the Ni atoms are doped near the symmetric center of the nanoribbons. These results might be of significance for developing the phosphorene based electronic nanodevices
      通信作者: 张华林, zhanghualin0703@126.com
    • 基金项目: 国家自然科学基金(批准号: 61771076)和长沙理工大学近地空间电磁环境监测与建模湖南省普通高校重点实验室开放基金 (批准号: 20170106) 资助的课题
      Corresponding author: Zhang Hua-Lin, zhanghualin0703@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61771076) and the Open Research Fund of the Hunan Province Higher Education Key Laboratory of Modeling and Monitoring on the Near-Earth Electromagnetic Environments, Changsha University of Science & Technology, China (Grant No. 20170106)
    [1]

    Reich E S 2014 Nature 506 19Google Scholar

    [2]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tomanek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [3]

    Rodin A S, Carvalho A, Castro Neto A H 2014 Phys. Rev. Lett. 112 176801Google Scholar

    [4]

    Peng X H, Wei Q, Copple A 2014 Phys. Rev. B 90 085402Google Scholar

    [5]

    Duan H J, Yang M, Wang R Q 2016 Physica E 81 177Google Scholar

    [6]

    Yawar M, Borhan A N 2016 Superlattices Microstruct. 89 204Google Scholar

    [7]

    Hu W, Yang J L 2015 J. Phys. Chem. C 119 35Google Scholar

    [8]

    Srivastava P, Hembram K P S S, Mizuseki H, Lee K R, Han S S, Kim S 2015 J. Phys. Chem. C 119 6530Google Scholar

    [9]

    Ziletti A, Carvalho A, Campbell D K, Coker D F, Castro Neto A H 2015 Phys. Rev. Lett. 114 046801Google Scholar

    [10]

    Lalitha M, Nataraj Y, Lakshmipathi S 2016 Appl. Surf. Sci. 377 311Google Scholar

    [11]

    Son J, Hashmi A, Hong J 2016 Curr. Appl. Phys. 16 506Google Scholar

    [12]

    Khan I, Hong J 2015 New J. Phys. 17 023056Google Scholar

    [13]

    Hashmi A, Hong J 2015 J. Phys. Chem. C 119 9198Google Scholar

    [14]

    Zheng H L, Zhang J M, Yang B S, Du X B, Yan Y 2015 Phys. Chem. Chem. Phys. 17 16341Google Scholar

    [15]

    Luan Z H, Zhao L, Chang H, Sun D, Tan C L, Huang Y W 2017 Superlattices Microstruct. 111 816Google Scholar

    [16]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechno. 9 372Google Scholar

    [17]

    Yao Q S, Huang C X, Yuan Y B, Liu Y Z, Liu S M, Deng K M, Kan E 2015 J. Phys. Chem. C 119 6923Google Scholar

    [18]

    Yu Z G, Zhang Y W, Yakobson B I 2016 Nano Energy 23 34Google Scholar

    [19]

    Yu X C, Zhang S L, Zeng H B, Wang Q J 2016 Nano Energy 25 34Google Scholar

    [20]

    Guo H Y, Lu N, Dai J, Wu X J, Zeng X C 2014 J. Phys. Chem. C 118 14051Google Scholar

    [21]

    Zhang J, Liu H J, Cheng L, Wei J, Liang J H, Fan D D, Shi J, Tang X F, Zhang Q J 2014 Sci. Rep. 4 6452Google Scholar

    [22]

    Li W F, Zhang G, Zhang Y W 2014 J. Phys. Chem. C 118 22368Google Scholar

    [23]

    Tran V, Yang L 2014 Phys. Rev. B 89 245407Google Scholar

    [24]

    Wu Q Y, Shen L, Yang M, Cai Y Q, Huang Z G, Feng Y P 2015 Phys. Rev. B 92 035436Google Scholar

    [25]

    Xu L C, Song X J, Yang Z, Cao L, Liu R P, Li X Y 2015 Appl. Surf. Sci. 324 640Google Scholar

    [26]

    Peng X H, Copple A, Wei Q 2014 J. Appl. Phys. 116 144301Google Scholar

    [27]

    Zhang X O, Li Q F, Xu B, Wan B, Yin J, Wan X G 2016 Phys. Lett. A 380 614Google Scholar

    [28]

    Chen N, Wang Y P, Mu Y W, Fan Y F, Li S D 2017 Phys. Chem. Chem. Phys. 19 25441Google Scholar

    [29]

    Guo C X, Xia C X, Wang T X, Liu Y F 2017 J. Semicond. 38 033005Google Scholar

    [30]

    Zhou W Z, Zou H, Xiong X, Zhou Y, Liu R T, Ouyang F P 2017 Phys. E 94 53Google Scholar

    [31]

    Du Y P, Liu H M, Xu B, Sheng L, Yin J, Duan C G, Wan X G 2015 Sci. Rep. 5 8921Google Scholar

    [32]

    Zhu Z L, Li C, Yu W Y, Chang D H, Sun Q, Jia Y 2014 Appl. Phys. Lett. 105 113105Google Scholar

    [33]

    Ding B F, Chen W, Tang Z L, Zhang J Y 2016 J. Phys. Chem. C 120 2149Google Scholar

    [34]

    Ren Y, Cheng F, Zhang Z H, Zhou G H 2018 Sci. Rep. 8 2932Google Scholar

    [35]

    Hu R, Li Y H, Zhang Z H, Fan Z Q, Sun L 2019 J. Mater. Chem. C 7 7745Google Scholar

    [36]

    Zhao T, Fan Z Q, Zhang Z H, Zhou R L 2019 J. Phys. D: Appl. Phys. 52 475301Google Scholar

    [37]

    Kuang W, Hu R, Fan Z Q, Zhang Z H 2019 J. Phys.: Condens. Matter 31 145301Google Scholar

    [38]

    张华林, 孙琳, 王鼎 2016 物理学报 65 016101Google Scholar

    Zhang H L, Sun L, Wang D 2016 Acta Phys. Sin. 65 016101Google Scholar

    [39]

    张华林, 孙琳, 韩佳凝 2017 物理学报 66 246101Google Scholar

    Zhang H L, Sun L, Han J N 2017 Acta Phys. Sin. 66 246101Google Scholar

    [40]

    Han J N, He X, Fan Z Q, Zhang Z H 2019 Phys. Chem. Chem. Phys. 21 1830Google Scholar

    [41]

    Hu J K, Zhang Z H, Fan Z Q, Zhou R L 2019 Nanotechnol. 30 485703Google Scholar

    [42]

    Zou W, Yu Z Z, Zhang C X, Zhong J X, Sun L Z, 2012 Appl. Phys. Lett. 100 103109Google Scholar

    [43]

    Kuang W, Hu R, Fan Z Q, Zhang Z H 2019 Nanotechnol. 30 145201Google Scholar

  • 图 1  掺杂ZPNR的模型结构

    Fig. 1.  The geometric structure of doped ZPNRs.

    图 2  模拟退火后的模型结构 (a) Fe-ZPNR; (b) Co-ZPNR; (c) Ni-ZPNR

    Fig. 2.  The geometric structure after anneal simulation: (a) Fe-ZPNR; (b) Co-ZPNR; (c) Ni-ZPNR.

    图 3  ZPNR处于NM态的 (a) 能带结构和 (b) 态密度

    Fig. 3.  (a) The band structure and (b) density of states of ZPNRs in the nonmagnetic state.

    图 4  部分能带的电荷密度 (a) Fe-ZPNR; (b) Co-ZPNR; (c) Ni-ZPNR

    Fig. 4.  The charge density of partial band: (a) Fe-ZPNR; (b) Co-ZPNR; (c) Ni-ZPNR.

    图 5  掺杂ZPNRs投影态密度 (a) Fe-ZPNR; (b) Co-ZPNR; (c) Ni-ZPNR

    Fig. 5.  The partial density of states of ZPNRs: (a) Fe-ZPNR; (b) Co-ZPNR; (c) Ni-ZPNR.

    图 6  ZPNR处于FM态的能带结构和态密度 (a) ZPNR; (b) Fe-ZPNR; (c) Co-ZPNR; (d) Ni-ZPNR

    Fig. 6.  The band structure and density of states of ZPNRs in the ferromagnetic state: (a) ZPNR; (b) Fe-ZPNR; (c) Co-ZPNR; (d) Ni-ZPNR.

    图 7  自旋极化电荷密度等值面图 (a) Fe-ZPNR; (b) Co-ZPNR; (c) Ni-ZPNR

    Fig. 7.  The isosurface plots of spin polarization charge density in the ferromagnetic state: (a) Fe-ZPNR; (b) Co-ZPNR; (c) Ni-ZPNR

    图 8  改变掺杂位置时ZPNR的能带结构 (a) NM; (b) FM

    Fig. 8.  The band structure of ZPNRs with different doping position: (a) NM; (b) FM.

    表 1  掺杂和未掺杂ZPNR的键长、结合能和总能差

    Table 1.  The bond lengths, binding energy, and total energy difference of doped and pristine ZPNRs.

    systemd1d2d3d4d5Eb/eVENMEFM/meV
    ZPNR2.252.252.25–5.650
    Fe-ZPNR2.272.272.172.322.32–5.69130.11
    Co-ZPNR2.222.222.252.322.32–5.680
    Ni-ZPNR2.262.262.252.502.48–5.657.23
    下载: 导出CSV
  • [1]

    Reich E S 2014 Nature 506 19Google Scholar

    [2]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tomanek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [3]

    Rodin A S, Carvalho A, Castro Neto A H 2014 Phys. Rev. Lett. 112 176801Google Scholar

    [4]

    Peng X H, Wei Q, Copple A 2014 Phys. Rev. B 90 085402Google Scholar

    [5]

    Duan H J, Yang M, Wang R Q 2016 Physica E 81 177Google Scholar

    [6]

    Yawar M, Borhan A N 2016 Superlattices Microstruct. 89 204Google Scholar

    [7]

    Hu W, Yang J L 2015 J. Phys. Chem. C 119 35Google Scholar

    [8]

    Srivastava P, Hembram K P S S, Mizuseki H, Lee K R, Han S S, Kim S 2015 J. Phys. Chem. C 119 6530Google Scholar

    [9]

    Ziletti A, Carvalho A, Campbell D K, Coker D F, Castro Neto A H 2015 Phys. Rev. Lett. 114 046801Google Scholar

    [10]

    Lalitha M, Nataraj Y, Lakshmipathi S 2016 Appl. Surf. Sci. 377 311Google Scholar

    [11]

    Son J, Hashmi A, Hong J 2016 Curr. Appl. Phys. 16 506Google Scholar

    [12]

    Khan I, Hong J 2015 New J. Phys. 17 023056Google Scholar

    [13]

    Hashmi A, Hong J 2015 J. Phys. Chem. C 119 9198Google Scholar

    [14]

    Zheng H L, Zhang J M, Yang B S, Du X B, Yan Y 2015 Phys. Chem. Chem. Phys. 17 16341Google Scholar

    [15]

    Luan Z H, Zhao L, Chang H, Sun D, Tan C L, Huang Y W 2017 Superlattices Microstruct. 111 816Google Scholar

    [16]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechno. 9 372Google Scholar

    [17]

    Yao Q S, Huang C X, Yuan Y B, Liu Y Z, Liu S M, Deng K M, Kan E 2015 J. Phys. Chem. C 119 6923Google Scholar

    [18]

    Yu Z G, Zhang Y W, Yakobson B I 2016 Nano Energy 23 34Google Scholar

    [19]

    Yu X C, Zhang S L, Zeng H B, Wang Q J 2016 Nano Energy 25 34Google Scholar

    [20]

    Guo H Y, Lu N, Dai J, Wu X J, Zeng X C 2014 J. Phys. Chem. C 118 14051Google Scholar

    [21]

    Zhang J, Liu H J, Cheng L, Wei J, Liang J H, Fan D D, Shi J, Tang X F, Zhang Q J 2014 Sci. Rep. 4 6452Google Scholar

    [22]

    Li W F, Zhang G, Zhang Y W 2014 J. Phys. Chem. C 118 22368Google Scholar

    [23]

    Tran V, Yang L 2014 Phys. Rev. B 89 245407Google Scholar

    [24]

    Wu Q Y, Shen L, Yang M, Cai Y Q, Huang Z G, Feng Y P 2015 Phys. Rev. B 92 035436Google Scholar

    [25]

    Xu L C, Song X J, Yang Z, Cao L, Liu R P, Li X Y 2015 Appl. Surf. Sci. 324 640Google Scholar

    [26]

    Peng X H, Copple A, Wei Q 2014 J. Appl. Phys. 116 144301Google Scholar

    [27]

    Zhang X O, Li Q F, Xu B, Wan B, Yin J, Wan X G 2016 Phys. Lett. A 380 614Google Scholar

    [28]

    Chen N, Wang Y P, Mu Y W, Fan Y F, Li S D 2017 Phys. Chem. Chem. Phys. 19 25441Google Scholar

    [29]

    Guo C X, Xia C X, Wang T X, Liu Y F 2017 J. Semicond. 38 033005Google Scholar

    [30]

    Zhou W Z, Zou H, Xiong X, Zhou Y, Liu R T, Ouyang F P 2017 Phys. E 94 53Google Scholar

    [31]

    Du Y P, Liu H M, Xu B, Sheng L, Yin J, Duan C G, Wan X G 2015 Sci. Rep. 5 8921Google Scholar

    [32]

    Zhu Z L, Li C, Yu W Y, Chang D H, Sun Q, Jia Y 2014 Appl. Phys. Lett. 105 113105Google Scholar

    [33]

    Ding B F, Chen W, Tang Z L, Zhang J Y 2016 J. Phys. Chem. C 120 2149Google Scholar

    [34]

    Ren Y, Cheng F, Zhang Z H, Zhou G H 2018 Sci. Rep. 8 2932Google Scholar

    [35]

    Hu R, Li Y H, Zhang Z H, Fan Z Q, Sun L 2019 J. Mater. Chem. C 7 7745Google Scholar

    [36]

    Zhao T, Fan Z Q, Zhang Z H, Zhou R L 2019 J. Phys. D: Appl. Phys. 52 475301Google Scholar

    [37]

    Kuang W, Hu R, Fan Z Q, Zhang Z H 2019 J. Phys.: Condens. Matter 31 145301Google Scholar

    [38]

    张华林, 孙琳, 王鼎 2016 物理学报 65 016101Google Scholar

    Zhang H L, Sun L, Wang D 2016 Acta Phys. Sin. 65 016101Google Scholar

    [39]

    张华林, 孙琳, 韩佳凝 2017 物理学报 66 246101Google Scholar

    Zhang H L, Sun L, Han J N 2017 Acta Phys. Sin. 66 246101Google Scholar

    [40]

    Han J N, He X, Fan Z Q, Zhang Z H 2019 Phys. Chem. Chem. Phys. 21 1830Google Scholar

    [41]

    Hu J K, Zhang Z H, Fan Z Q, Zhou R L 2019 Nanotechnol. 30 485703Google Scholar

    [42]

    Zou W, Yu Z Z, Zhang C X, Zhong J X, Sun L Z, 2012 Appl. Phys. Lett. 100 103109Google Scholar

    [43]

    Kuang W, Hu R, Fan Z Q, Zhang Z H 2019 Nanotechnol. 30 145201Google Scholar

  • [1] 卢一林, 董盛杰, 崔方超, 张开成, 刘春梅, 李杰森, 毛卓. 碳和氧掺杂紫磷烯作为双极磁性半导体材料的理论预测. 物理学报, 2024, 73(1): 016301. doi: 10.7498/aps.73.20231279
    [2] 李景辉, 曹胜果, 韩佳凝, 李占海, 张振华. 边修饰GeS2纳米带的电子特性及调控效应. 物理学报, 2024, 73(5): 056102. doi: 10.7498/aps.73.20231670
    [3] 徐永虎, 邓小清, 孙琳, 范志强, 张振华. 边修饰Net-Y纳米带的电子结构及机械开关特性的应变调控效应. 物理学报, 2022, 71(4): 046102. doi: 10.7498/aps.71.20211748
    [4] 亢玉彬, 唐吉龙, 李科学, 李想, 侯效兵, 楚学影, 林逢源, 王晓华, 魏志鹏. Be, Si掺杂调控GaAs纳米线结构相变及光学特性. 物理学报, 2021, 70(20): 207804. doi: 10.7498/aps.70.20210782
    [5] 徐永虎, 邓小清, 孙琳, 范志强, 张振华. 边修饰Net-Y纳米带的电子结构及机械开关特性的应变调控效应. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211748
    [6] 张华林, 孙琳, 韩佳凝. 掺杂三角形硼氮片的锯齿型石墨烯纳米带的磁电子学性质. 物理学报, 2017, 66(24): 246101. doi: 10.7498/aps.66.246101
    [7] 刘雅楠, 路俊哲, 祝恒江, 唐宇超, 林响, 刘晶, 王婷. 锯齿型碳纳米管的结构衍生及电子特性. 物理学报, 2017, 66(9): 093601. doi: 10.7498/aps.66.093601
    [8] 高潭华. 外来原子替代碳的氟化石墨烯的磁性和电子性质. 物理学报, 2014, 63(4): 046102. doi: 10.7498/aps.63.046102
    [9] 林雪玲, 潘凤春. 氮掺杂的金刚石磁性研究. 物理学报, 2013, 62(16): 166102. doi: 10.7498/aps.62.166102
    [10] 李骏, 张振华, 王成志, 邓小清, 范志强. 石墨烯纳米带卷曲效应对其电子特性的影响. 物理学报, 2013, 62(5): 056103. doi: 10.7498/aps.62.056103
    [11] 曾永昌, 田文, 张振华. 周期性纳米洞内边缘氧饱和石墨烯纳米带的电子特性. 物理学报, 2013, 62(23): 236102. doi: 10.7498/aps.62.236102
    [12] 胡小会, 许俊敏, 孙立涛. 金掺杂锯齿型石墨烯纳米带的电磁学特性研究. 物理学报, 2012, 61(4): 047106. doi: 10.7498/aps.61.047106
    [13] 王英龙, 王秀丽, 梁伟华, 郭建新, 丁学成, 褚立志, 邓泽超, 傅广生. 不同浓度Er掺杂Si纳米晶粒电子结构和光学性质的第一性原理研究. 物理学报, 2011, 60(12): 127302. doi: 10.7498/aps.60.127302
    [14] 张富春, 张威虎, 董军堂, 张志勇. Cr掺杂ZnO纳米线的电子结构和磁性. 物理学报, 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [15] 刘甦, 李斌, 王玮, 汪军, 刘楣. 铁基化合物 SrFeAsF以及 Co掺杂超导体SrFe0.875Co0.125AsF的电子结构和磁性. 物理学报, 2010, 59(6): 4245-4252. doi: 10.7498/aps.59.4245
    [16] 梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙. 镍掺杂硅纳米线电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [17] 乐伶聪, 马新国, 唐豪, 王扬, 李翔, 江建军. 过渡金属掺杂钛酸纳米管的电子结构和光学性质研究. 物理学报, 2010, 59(2): 1314-1320. doi: 10.7498/aps.59.1314
    [18] 潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙. 单层正三角锯齿型石墨烯量子点的电子结构和磁性. 物理学报, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [19] 张加宏, 马 荣, 刘 甦, 刘 楣. 掺杂MgCNi3超导电性和磁性的第一性原理研究. 物理学报, 2006, 55(9): 4816-4821. doi: 10.7498/aps.55.4816
    [20] 朱志永, 王文全, 苗元华, 王岩松, 陈丽婕, 代学芳, 刘国栋, 陈京兰, 吴光恒. 掺杂对Ni51.5Mn25Ga23.5相变行为和磁性的影响. 物理学报, 2005, 54(10): 4894-4897. doi: 10.7498/aps.54.4894
计量
  • 文章访问数:  4378
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-26
  • 修回日期:  2020-10-15
  • 上网日期:  2021-02-25
  • 刊出日期:  2021-03-05

/

返回文章
返回