搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于无芯光纤的多参数测量传感器

孙家程 王婷婷 戴洋 常建华 柯炜

引用本文:
Citation:

基于无芯光纤的多参数测量传感器

孙家程, 王婷婷, 戴洋, 常建华, 柯炜

Multi-parameter measurement sensor based on no-core fiber

Sun Jia-Cheng, Wang Ting-Ting, Dai Yang, Chang Jian-Hua, Ke Wei
PDF
HTML
导出引用
  • 设计并制作了一种基于单模-无芯-单模-无芯-单模光纤结构的马赫-曾德尔传感器, 可用来同时测量折射率和温度. 该传感器中, 两处无芯光纤充当输入、输出耦合器, 中间单模光纤作为传感臂. 利用有限元仿真和理论分析, 确定耦合器和传感臂的最优长度为15 mm. 在无芯光纤中激发出的高阶模进入单模光纤的包层传输, 由于倏逝场的作用, 受到环境折射率和温度的影响. 选取透射谱不同干涉级次的波谷作为研究对象, 实现了折射率和温度的同步测量. 实验结果表明: 1545 nm附近干涉谷的折射率和温度灵敏度分别为–153.89 nm/RIU (refractive index unit)和0.166 nm/℃; 1570 nm附近干涉谷的折射率和温度灵敏度分别为–202.74 nm/RIU和0.183 nm/℃. 该传感器在实现折射率和温度同步测量的同时, 仍能保持较高灵敏度, 在生物医疗等方面有着较好的应用前景.
    Aiming at the phenomenon of single measurement parameters and low sensitivity of most Mach-Zehnder sensors based on fiber core mismatch, in this paper we design and build a Mach-Zehnder sensor based on single-mode-no-core-single-mode-no-core-single-mode fiber structure, which can be used to measure refractive index and temperature simultaneously. In this sensor, two no-core optical fiber serve as input and output couplers, the intermediate single-mode is used as a sensing arm. Using finite element simulation and theoretical analysis, the optimal length of the coupler and the sensing arm are determined to be 15 mm. High-order modes excited by no-core optical fiber propagate through the cladding of single-mode fiber, which is affected by the ambient refractive index and temperature because of the influence of the evanescent filed. Trough of different interference orders of transmission spectrum is selected as a research object to realize the simultaneous measurement of refractive index and temperature by using sensitivity coefficient matrix. After the further Fourier transform of the transmission spectrum, the frequency of the main mode that interferes with the fundamental mode is analyzed from the spectrogram to be 0.00098 nm–1. Because of the influence of temperature on the refractive index of water during temperature sensitivity measurement, temperature sensitivity formula and water temperature coefficient are introduced to perform temperature compensation to eliminate the cross sensitivity. In this paper, the 10 mm and 15 mm sensing arms are selected for refractive index comparison experiment, and the temperature experiment is focused on the sensing arm with an optimal length of 15 mm. The experimental results show that the transmission spectrum is blue-shifted with the increase of refractive index in a refractive index range of 1.333–1.397, and the transmission spectrum is red-shifted with the increase of temperature in a temperature range from 30 ℃ to 70 ℃. The refractive index and temperature sensitivity of the interference valley near 1545 nm are –153.89 nm/RIU and 0.166 nm/℃, respectively; the refractive index and temperature sensitivity of the interference valley near 1570 nm are –202.74 nm/RIU and 0.183 nm/℃, respectively. The experimental results are consistent with the theoretical analyses. Compared with the sensor of the same type, this sensor can still maintain high sensitivity while achieving simultaneous measurement of refractive index and temperature, and has a simple structure, which has a good application prospect in biomedical and other aspects.
      通信作者: 柯炜, kewei@njnu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 61405094)和江苏高校优势学科Ⅲ期建设工程项目(“信息与通信工程”优势学科)资助的课题
      Corresponding author: Ke Wei, kewei@njnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61405094) and the Priority Academic Program Phase III Development of Higher Education Institution of Jiangsu Province (“Information and Communication Engineering” Priority Academic Program), China
    [1]

    Tong R J, Zhao Y, Chen M Q, Peng Y 2019 Opt. Fiber Technol. 48 242Google Scholar

    [2]

    Wang Y L, Liu Y Q, Zou F, Jiang C, Mou C B, Wang T Y 2019 Sensors 19 2263Google Scholar

    [3]

    Hooda B, Rastogi V 2018 Optik 170 237Google Scholar

    [4]

    Zhang C B, Ning T G, Li J, Pei L, Li C, Lin H 2017 Opt. Fiber Technol. 33 71Google Scholar

    [5]

    Semwal V, Gupta B D 2019 Sens. Actuators, B 283 632Google Scholar

    [6]

    Zubiate P, Zamarreno C R, Villar I D, Matias I R, Arregui F J 2016 Sens. Actuators, B 231 484Google Scholar

    [7]

    Luo Y, Lei X Q, Shi F Q, Peng B J 2018 Optik 174 252Google Scholar

    [8]

    卜胜利, 汤佳莉, 刘志恒, 罗龙锋 2015 光子学报 44 1206002Google Scholar

    Pu S L, Tang J L, Liu Z H, Luo L F 2015 Acta Photon. Sin. 44 1206002Google Scholar

    [9]

    Wang F, Pang K B, Ma T, Wang X, Liu Y F 2020 Opt. Laser Technol. 130 106333Google Scholar

    [10]

    Jiao T, Meng H Y, Deng S Y, Liu S, Wang X J, Wei Z C, Wang F Q, Tan C H, Huang X G 2019 Opt. Laser Technol. 111 612Google Scholar

    [11]

    Liu W, Wu X Q, Zhang G, Li S L, Zuo C, Fang S S, Yu B L 2020 Opt. Fiber Technol. 54 102101Google Scholar

    [12]

    Wang L Q, Yang L, Zhang C, Miao C Y, Zhao J F, Xu W 2019 Opt. Laser Technol. 109 193Google Scholar

    [13]

    Tong Z R, Zhong Y M, Wang X, Zhang W H 2018 Opt. Commun. 421 1Google Scholar

    [14]

    张傲岩, 黄会玲, 江超, 董航宇, 王解, 刘昌宁, 孙四梅, 胡荟灵 2017 光电子·激光 30 1017Google Scholar

    Zhang A Y, Huang H L, Jiang C, Dong H Y, Wang X, Liu C Y, Sun S M, Hu H L 2017 J. Optoelectron. Lasers 30 1017Google Scholar

    [15]

    Wu Q, Semenova Y, Wang P F, Farrell G 2011 Opt. Express 19 7937Google Scholar

    [16]

    刘敏, 冯德玖, 冯文林 2019 光学学报 39 1006007Google Scholar

    Liu M, Feng D J, Feng W L 2019 Acta Opt. Sin. 39 1006007Google Scholar

    [17]

    程君妮 2018 物理学报 67 024212Google Scholar

    Cheng J N 2018 Acta Phys. Sin. 67 024212Google Scholar

    [18]

    李辉栋, 傅海威, 邵敏, 赵娜, 乔学光, 刘颖刚, 李岩, 闫旭 2013 物理学报 62 214209Google Scholar

    Li H D, Fu H W, Shao M, Zhao N, Qiao X G, Liu Y G, Li Y, Yan X 2013 Acta Phys. Sin. 62 214209Google Scholar

    [19]

    王旗, 邹辉, 韦玮 2017 光学学报 37 1006005Google Scholar

    Wang Q, Zou H, Wei W 2017 Acta Opt. Sin. 37 1006005Google Scholar

    [20]

    Choi H Y, Kim M J, Lee B H 2007 Opt. Express 15 5711Google Scholar

    [21]

    彭星玲, 茶映鹏, 张华, 李玉龙 2018 光子学报 47 1106006Google Scholar

    Peng X L, Cha Y P, Zhang H, Li Y L 2018 Acta Photon. Sin. 47 1106006Google Scholar

    [22]

    Wang H H, Meng H Y, Xiong R, Wang Q H, Hung B, Zhang X, Yu W, Tan C H, Huang X G 2016 Opt. Commun. 364 191Google Scholar

    [23]

    Yan J H, Zhang A P, Shao L Y, Ding J F, He S L 2007 IEEE Sens. J. 7 1360Google Scholar

  • 图 1  传感器结构和传光原理示意图

    Fig. 1.  Schematic diagram of sensor structure and light transmission principle.

    图 2  光沿NCF传播场分布图

    Fig. 2.  Field distribution of light propagation in NCF.

    图 3  传感器在不同折射率溶液下的透射光谱图

    Fig. 3.  Transmission spectrum of the sensor under different refractive index solutions.

    图 4  传感器的空间频谱图

    Fig. 4.  Spatial frequency spectrum of the sensor.

    图 5  传感臂长度不同的传感器透射光谱图

    Fig. 5.  Transmission spectra of the sensor with different lengths of sensing arms.

    图 6  实验装置

    Fig. 6.  Schematic diagram of experimental setup.

    图 7  10 mm传感臂的传感器在不同环境折射率溶液中的透射光谱图

    Fig. 7.  Transmission spectra of the sensor with 10 mm sensing arm response under different ambient refractive index solutions.

    图 8  15 mm传感臂的传感器在不同环境折射率溶液中的透射光谱图

    Fig. 8.  Transmission spectra of the sensor with 15 mm sensing arm response under different ambient refractive index solutions.

    图 9  不同长度传感臂的折射率灵敏度拟合图

    Fig. 9.  Fitting diagram of refractive index sensitivity with different length sensing arms.

    图 10  传感器在不同温度下的透射光谱图

    Fig. 10.  Transmission spectra of the sensor response at different values of temperature.

    图 11  不同级次干涉谷的温度灵敏度拟合图

    Fig. 11.  Fitting diagram of temperature sensitivity with different order interference dips.

    表 1  同步测量折射率和温度的马赫-曾德尔传感器的性能比较

    Table 1.  Performance comparison of Mach-Zehnder sensors with simultaneous measurement of refractive index and temperature.

    结构折射率灵敏度/(nm·RIU–1)温度灵敏度/(nm·℃–1)
    单模-多模-
    细芯-单模[10]
    –18.176400.0733
    单模-细芯-细芯-
    细芯-单模[11]
    –169.08790.0464
    单模-多模-无芯-
    多模-单模[12]
    –1364.3430.0330
    单模-球状-少模-
    球状-单模[13]
    –27.770000.0540
    单模-多模-多芯-
    多模-单模[14]
    54.300000.109
    本工作–202.74000.183
    下载: 导出CSV
  • [1]

    Tong R J, Zhao Y, Chen M Q, Peng Y 2019 Opt. Fiber Technol. 48 242Google Scholar

    [2]

    Wang Y L, Liu Y Q, Zou F, Jiang C, Mou C B, Wang T Y 2019 Sensors 19 2263Google Scholar

    [3]

    Hooda B, Rastogi V 2018 Optik 170 237Google Scholar

    [4]

    Zhang C B, Ning T G, Li J, Pei L, Li C, Lin H 2017 Opt. Fiber Technol. 33 71Google Scholar

    [5]

    Semwal V, Gupta B D 2019 Sens. Actuators, B 283 632Google Scholar

    [6]

    Zubiate P, Zamarreno C R, Villar I D, Matias I R, Arregui F J 2016 Sens. Actuators, B 231 484Google Scholar

    [7]

    Luo Y, Lei X Q, Shi F Q, Peng B J 2018 Optik 174 252Google Scholar

    [8]

    卜胜利, 汤佳莉, 刘志恒, 罗龙锋 2015 光子学报 44 1206002Google Scholar

    Pu S L, Tang J L, Liu Z H, Luo L F 2015 Acta Photon. Sin. 44 1206002Google Scholar

    [9]

    Wang F, Pang K B, Ma T, Wang X, Liu Y F 2020 Opt. Laser Technol. 130 106333Google Scholar

    [10]

    Jiao T, Meng H Y, Deng S Y, Liu S, Wang X J, Wei Z C, Wang F Q, Tan C H, Huang X G 2019 Opt. Laser Technol. 111 612Google Scholar

    [11]

    Liu W, Wu X Q, Zhang G, Li S L, Zuo C, Fang S S, Yu B L 2020 Opt. Fiber Technol. 54 102101Google Scholar

    [12]

    Wang L Q, Yang L, Zhang C, Miao C Y, Zhao J F, Xu W 2019 Opt. Laser Technol. 109 193Google Scholar

    [13]

    Tong Z R, Zhong Y M, Wang X, Zhang W H 2018 Opt. Commun. 421 1Google Scholar

    [14]

    张傲岩, 黄会玲, 江超, 董航宇, 王解, 刘昌宁, 孙四梅, 胡荟灵 2017 光电子·激光 30 1017Google Scholar

    Zhang A Y, Huang H L, Jiang C, Dong H Y, Wang X, Liu C Y, Sun S M, Hu H L 2017 J. Optoelectron. Lasers 30 1017Google Scholar

    [15]

    Wu Q, Semenova Y, Wang P F, Farrell G 2011 Opt. Express 19 7937Google Scholar

    [16]

    刘敏, 冯德玖, 冯文林 2019 光学学报 39 1006007Google Scholar

    Liu M, Feng D J, Feng W L 2019 Acta Opt. Sin. 39 1006007Google Scholar

    [17]

    程君妮 2018 物理学报 67 024212Google Scholar

    Cheng J N 2018 Acta Phys. Sin. 67 024212Google Scholar

    [18]

    李辉栋, 傅海威, 邵敏, 赵娜, 乔学光, 刘颖刚, 李岩, 闫旭 2013 物理学报 62 214209Google Scholar

    Li H D, Fu H W, Shao M, Zhao N, Qiao X G, Liu Y G, Li Y, Yan X 2013 Acta Phys. Sin. 62 214209Google Scholar

    [19]

    王旗, 邹辉, 韦玮 2017 光学学报 37 1006005Google Scholar

    Wang Q, Zou H, Wei W 2017 Acta Opt. Sin. 37 1006005Google Scholar

    [20]

    Choi H Y, Kim M J, Lee B H 2007 Opt. Express 15 5711Google Scholar

    [21]

    彭星玲, 茶映鹏, 张华, 李玉龙 2018 光子学报 47 1106006Google Scholar

    Peng X L, Cha Y P, Zhang H, Li Y L 2018 Acta Photon. Sin. 47 1106006Google Scholar

    [22]

    Wang H H, Meng H Y, Xiong R, Wang Q H, Hung B, Zhang X, Yu W, Tan C H, Huang X G 2016 Opt. Commun. 364 191Google Scholar

    [23]

    Yan J H, Zhang A P, Shao L Y, Ding J F, He S L 2007 IEEE Sens. J. 7 1360Google Scholar

计量
  • 文章访问数:  5654
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-04
  • 修回日期:  2020-10-04
  • 上网日期:  2021-03-03
  • 刊出日期:  2021-03-20

/

返回文章
返回