搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Si微/纳米带的制备与热电性能

魏江涛 杨亮亮 魏磊 秦源浩 宋培帅 张明亮 杨富华 王晓东

引用本文:
Citation:

Si微/纳米带的制备与热电性能

魏江涛, 杨亮亮, 魏磊, 秦源浩, 宋培帅, 张明亮, 杨富华, 王晓东

Fabrication and thermoelectric properties of Si micro/nanobelts

Wei Jiang-Tao, Yang Liang-Liang, Wei Lei, Qin Yuan-Hao, Song Pei-Shuai, Zhang Ming-Liang, Yang Fu-Hua, Wang Xiao-Dong
PDF
HTML
导出引用
  • 目前, 低维材料是热电领域研究的热点, 因为块体材料低维化后热电性能会得到显著的改善. 块体材料低维化有很多方法, 本文基于半导体微加工和聚焦离子束技术制备了尺寸可控的Si微/纳米带, 并通过微悬空结构详细研究了不同尺寸Si微/纳米带的热电性能. 实验发现: 随着Si微/纳米带宽度的减小, 材料的热导率发生了显著的降低, 从体硅的148 W/(m·K)降低到17.75 W/(m·K)(800 nm); 材料的Seebeck系数低于相应的体Si值. 热导率的降低主要来源于声子边界散射的增加, 这显著抑制了Si材料中声子的传输行为, 从而影响热能的传输和转换. 在373 K时, 800 nm宽的Si微/纳米带的ZT值约达到了0.056, 与体硅相比增大了约6倍. 聚焦离子束加工技术为将来Si材料提高热电性能提供了新的制备方案, 这种技术也可以应用于其他材料低维化的制备.
    Currently, low-dimensional materials are a hot spot in the field of thermoelectric research, because the thermoelectric properties will be significantly improved after the low-dimensionalization of bulk materials. In a bulk material, its thermoelectric figure of merit ZT value cannot be increased by changing a single parameter, because the parameters of the material are interrelated to each other, which is not conducive to the research of internal factors and thus limiting the efficiency of thermoelectric material, but thermoelectric material on a micro-nano scale is more flexible to adjust its thermoelectric figure of merit ZT value. There are many different kinds of methods of implementing the low-dimensionalization of bulk materials. In this paper, size-controllable Si micro/nanobelts are prepared based on semiconductor micromachining and focused ion beam (FIB) technology, and the thermoelectric properties of Si micro/nanobelts of different sizes are comprehensively studied by the micro-suspension structure method.In this experiment, we find that the conductivity of doped Si micro/nanobelt is significantly better than that of bulk Si material, that as the width of the Si micro/nanobelt decreases, the thermal conductivity of the material decreases significantly, from 148 W/(m·K) of bulk silicon to 17.75 W/(m·K) of 800 nm wide Si micro-nanobelt, that the Seebeck coefficient of the material is lower than that of the corresponding bulkmaterials. The decrease of thermal conductivity is mainly due to the boundary effect caused by the size reduction, which leads the phonon boundary scattering to increase, and thus significantly inhibiting the behavior of phonon transmission in the Si material, thereby further affecting the transmission and conversion of thermal energy in the material. At 373 K, the maximum ZT value of the 800 nm wide Si micro/nanobelt reaches ~0.056, which is about 6 times larger than that of bulk silicon. And as the width of the Si micronanobelt is further reduced, the thermoelectric figure of merit ZT value will be further improved, making Si material an effective thermoelectric material. The FIB processing technology provides a new preparation scheme for improving the thermoelectric performances of Si materials in the future, and this manufacturing technology can also be applied to the low-dimensional preparation of other materials.
      通信作者: 王晓东, xdwang@semi.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFB1503602, 2018YFB1107502)、中国科学院战略性先导科技专项(B类)(批准号: XDB43020500)和中国科学院科研仪器设备研制项目(批准号: GJJSTD20200006)资助的课题
      Corresponding author: Wang Xiao-Dong, xdwang@semi.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2019YFB1503602, 2018YFB1107502), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB43020500), and the Development Program of Scientific Research Instruments and Equipment of the Chinese Academy of Sciences, China (Grant No. GJJSTD20200006)
    [1]

    Zhou Y, Guo Z, He J 2020 Appl. Phys. Lett. 116 043904Google Scholar

    [2]

    袁国才, 陈曦, 黄雨阳, 毛俊西, 禹劲秋, 雷晓波, 张勤勇 2019 物理学报 68 117201Google Scholar

    Yuan G C, Chen X, Huang Y Y, Mao J X, Yu J Q, Lei X B, Zhang Q Y 2019 Acta Phys. Sin. 68 117201Google Scholar

    [3]

    邹平, 吕丹, 徐桂英 2020 物理学报 69 057201Google Scholar

    Zou P, Lv D, Xu G Y 2020 Acta Phys. Sin. 69 057201Google Scholar

    [4]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [5]

    Vining C B 2009 Nat. Mater. 8 83Google Scholar

    [6]

    Sales B C, Mandrus D, Williams R K 1996 Science 272 1325Google Scholar

    [7]

    Kim H S, Liu W, Chen G, Chu C W, Ren Z 2015 Proc. Natl. Acad. Sci. U.S.A. 112 8205Google Scholar

    [8]

    Goldsmid H J, Douglas R W 1954 Br. J. Appl. Phys. 5 386Google Scholar

    [9]

    Zhao H, Sun X, Zhu Z, Zhong W, Song D, Lu W, Tao L 2020 J. Semicond. 41 081001Google Scholar

    [10]

    Cai X, Han X, Zhao C, Niu C, Jia Y 2020 J. Semicond. 41 081002Google Scholar

    [11]

    Castenmiller C, Zandvliet H J W 2020 J. Semicond. 41 082003Google Scholar

    [12]

    Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard W A III, Heath J R 2008 Nature 451 168Google Scholar

    [13]

    Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A, Yang P 2008 Nature 451 163Google Scholar

    [14]

    Zhang Y, Su Q, Zhu J, Koirala S, Koester S J, Wang X 2020 Appl. Phys. Lett. 116 202101Google Scholar

    [15]

    Pettes M T, Jo I, Yao Z, Shi L 2011 Nano Lett. 11 1195Google Scholar

    [16]

    Liu H, Yang C, Wei B, Jin L, Alatas A, Said A, Tongay S, Yang F, Javey A, Hong J, Wu J 2020 Adv. Sci. 7 1902071Google Scholar

    [17]

    Shrestha R, Luan Y, Shin S, Zhang T, Luo X, Lundh J S, Gong W, Bockstaller M R, Choi S, Luo T, Chen R, Hippalgaonkar K, Shen S 2019 Sci. Adv. 5 eaax3777Google Scholar

    [18]

    Choe H S, Prabhakar R, Wehmeyer G, Allen F I, Lee W, Jin L, Li Y, Yang P, Qiu C W, Dames C, Scott M, Minor A, Bahk J H, Wu J 2019 Nano Lett. 19 3830Google Scholar

    [19]

    Choe H S, Li J, Zheng W, Lee J, Suh J, Allen F I, Liu H, Choi H J, Walukiewicz W, Zheng H, Wu J 2019 Appl. Phys. Lett. 114 152101Google Scholar

    [20]

    Park J, Bae K, Kim T R, Perez C, Sood A, Asheghi M, Goodson K E, Park W 2021 Adv. Sci. 8 2002876Google Scholar

    [21]

    Zhao Y, Zheng M, Wu J, Huang B, Thong J T L 2020 Nanotechnol. 31 225702Google Scholar

    [22]

    Madarasz F L, Lang J E, Szmulowicz F 1981 J. Electrochem. Soc. 128 2692Google Scholar

    [23]

    Wada H, Kamijoh T 1996 Jpn. J. Appl. Phys. 35 L648Google Scholar

    [24]

    Asheghi M, Kurabayashi K, Kasnavi R, Goodson K E 2002 J. Appl. Phys. 91 5079Google Scholar

    [25]

    Li D, Wu Y, Kim P, Shi L, Yang P, Majumdar A 2003 Appl. Phys. Lett. 83 2934Google Scholar

    [26]

    Alaie S, Goettler D F, Jiang Y B, Abbas K, Baboly M G, Anjum D H, Chaieb S, Leseman Z C 2015 Nanotechnol. 26 085704Google Scholar

    [27]

    Shrestha R, Li P, Chatterjee B, Zheng T, Wu X, Liu Z, Luo T, Choi S, Hippalgaonkar K, de Boer M P, Shen S 2018 Nat. Commun. 9 1664Google Scholar

    [28]

    Alaie S, Goettler D F, Abbas K, Su M F, Reinke C M, El-Kady I, Leseman Z C 2013 Rev. Sci. Instrum. 84 105003Google Scholar

    [29]

    Li D, Wu Y, Fan R, Yang P, Majumdar A 2003 Appl. Phys. Lett. 83 3186Google Scholar

    [30]

    Mavrokefalos A, Pettes M T, Zhou F, Shi L 2007 Rev. Sci. Instrum. 78 034901Google Scholar

    [31]

    Roh J, Hippalgaonkar K, Kang J, Lee S, Ham J, Chen R, Majumdar A, Kim W, Lee W 2010 3rd International Nanoelectronics Conference (INEC) January 3–8, 2010, Hong Kong, China p633

    [32]

    Lee S, Yang F, Suh J, Yang S, Lee Y, Li G, Sung Choe H, Suslu A, Chen Y, Ko C, Park J, Liu K, Li J, Hippalgaonkar K, Urban J J, Tongay S, Wu J 2015 Nat. Commun. 6 8573Google Scholar

    [33]

    Shi L, Li D Y, Yu C H, Jang W Y, Kim D, Yao Z, Kim P, Majumdar A 2003 J. Heat Transfer 125 881Google Scholar

    [34]

    An T H, Lim Y S, Park M J, Tak J Y, Lee S, Cho H K, Cho J Y, Park C, Seo W S 2016 APL Mater. 4 104812Google Scholar

    [35]

    Tang J, Wang H T, Lee D H, Fardy M, Huo Z, Russell T P, Yang P 2010 Nano Lett. 10 4279Google Scholar

    [36]

    Wingert M C, Chen Z C Y, Dechaumphai E, Moon J, Kim J H, Xiang J, Chen A R 2011 Nano Lett. 11 5507Google Scholar

    [37]

    Haras M, Lacatena V, Morini F, Robillard J F, Monfray S, Skotnicki T, Dubois E 2014 IEEE International Electr on Devices Meeting (IEDM) December 15–17, 2014, San Francisco, CA, USA p8.5.1

    [38]

    Lim J, Wang H T, Tang J, Andrews S C, So H, Lee J, Lee D H, Russell T P, Yang P 2016 ACS Nano 10 124Google Scholar

    [39]

    Holland M G 1963 Phys. Rev. 132 2461Google Scholar

  • 图 1  Si微/纳米带的制备流程 (a) SOI晶圆片; (b) 顶层硅刻蚀; (c) 埋氧层刻蚀; (d) 气态HF释放

    Fig. 1.  Si micro/nanobelt preparation process: (a) SOI wafer; (b) top silicon etching; (c) buried oxide layer etching; (d) gaseous HF release.

    图 2  FIB切割过程 (a) 制造过程中的横截面图; (b) 悬浮Si的SEM图

    Fig. 2.  Process of the FIB milling: (a) Cross sectional view of fabrication process; (b) SEM image of the released freestanding Si.

    图 3  微悬空结构的制备流程 (a) LPCVD生长低应力氮化硅; (b) 金属剥离制备蛇形电阻和引出电极; (c) RIE刻蚀氮化硅; (d) 悬空结构的最终释放

    Fig. 3.  Micro-suspension structure preparation process: (a) LPCVD growth of low-stress silicon nitride; (b) metal stripping to prepare serpentine resistors and lead electrodes; (c) RIE etching of silicon nitride; (d) release of final suspended structure.

    图 4  悬空结构的SEM图 (a) 悬空结构整体的SEM图; (b) 悬空部分在52° 倾角下的近景SEM图; (c) 微设备的伪彩色SEM图

    Fig. 4.  SEM images of the suspended structure: (a) SEM image of the whole suspended structure; (b) close-up SEM image of the suspended part at 52° inclination; (c) false colour SEM picture of the microdevice.

    图 5  (a) 纳米探针与Si微/纳米带接触过程; (b) 通过Pt金属焊接, 将Si微/纳米带从原本的位置转移走; (c) 纳米探针把Si微/纳米带转移到悬空结构上的过程; (d) 通过Pt金属焊接, 将Si微/纳米带固定在悬空岛两端; (e) 样品1, Si微/纳米带的宽度为2000 nm; (f) 样品2, Si微/纳米带的宽度为800 nm

    Fig. 5.  (a) Contact process between nanoprobe and Si micro/nanobelt; (b) transfer the Si micro/nanobelt from its original position by Pt metal welding; (c) process of transferring the Si micro/nanobelt to the suspended structure by the nanoprobe; (d) fix the Si micro/nanobelt on both ends of the suspended island by Pt metal welding; (e) Sample 1, where the width of the Si micro/nanobelt is 2000 nm; (f) Sample 2, where the width of the Si micro/nanobelt is 800 nm.

    图 6  (a) Pt电阻随温度的变化; (b) Pt电阻随温度的相对变化, R0为303 K时Pt电阻的阻值

    Fig. 6.  (a) Change of Pt resistance with temperature; (b) relative change of Pt resistance with temperature, where R0 is the resistance value of the Pt resistance at 303 K.

    图 7  (a) 样品电阻随温度的变化; (b) 样品电阻率随温度的变化

    Fig. 7.  (a) Change of samples’ resistance with temperature; (b) change of sample resistivity with temperature.

    图 8  (a) 引线电阻随温度的变化; (b) 样品塞贝克系数随温度的变化. Seebeck系数的不确定性为5%

    Fig. 8.  (a) Change of wires’ resistance with temperature; (b) change of samples’ Seebeck coefficient with temperature. The uncertainty of Seebeck coefficient is 5%.

    图 9  (a) 样品在不同温度下的热导率值, 插点为文献值; (b) 样品在不同温度下的ZT值, 其中热导率和ZT值的不确定性分别为8%和13%

    Fig. 9.  (a) Thermal conductivity value of the sample at different temperatures, where the interpolation point is literature values; (b) ZT value of the samples at different temperatures. The uncertainty of thermal conductivity and ZT value are 8% and 13%, respectively.

    表 1  不同样品的尺寸参数

    Table 1.  Size parameters of different samples.

    宽度/nm厚度/nm长度/µm
    Sample 120002205
    Sample 28002203
    下载: 导出CSV
  • [1]

    Zhou Y, Guo Z, He J 2020 Appl. Phys. Lett. 116 043904Google Scholar

    [2]

    袁国才, 陈曦, 黄雨阳, 毛俊西, 禹劲秋, 雷晓波, 张勤勇 2019 物理学报 68 117201Google Scholar

    Yuan G C, Chen X, Huang Y Y, Mao J X, Yu J Q, Lei X B, Zhang Q Y 2019 Acta Phys. Sin. 68 117201Google Scholar

    [3]

    邹平, 吕丹, 徐桂英 2020 物理学报 69 057201Google Scholar

    Zou P, Lv D, Xu G Y 2020 Acta Phys. Sin. 69 057201Google Scholar

    [4]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [5]

    Vining C B 2009 Nat. Mater. 8 83Google Scholar

    [6]

    Sales B C, Mandrus D, Williams R K 1996 Science 272 1325Google Scholar

    [7]

    Kim H S, Liu W, Chen G, Chu C W, Ren Z 2015 Proc. Natl. Acad. Sci. U.S.A. 112 8205Google Scholar

    [8]

    Goldsmid H J, Douglas R W 1954 Br. J. Appl. Phys. 5 386Google Scholar

    [9]

    Zhao H, Sun X, Zhu Z, Zhong W, Song D, Lu W, Tao L 2020 J. Semicond. 41 081001Google Scholar

    [10]

    Cai X, Han X, Zhao C, Niu C, Jia Y 2020 J. Semicond. 41 081002Google Scholar

    [11]

    Castenmiller C, Zandvliet H J W 2020 J. Semicond. 41 082003Google Scholar

    [12]

    Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard W A III, Heath J R 2008 Nature 451 168Google Scholar

    [13]

    Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A, Yang P 2008 Nature 451 163Google Scholar

    [14]

    Zhang Y, Su Q, Zhu J, Koirala S, Koester S J, Wang X 2020 Appl. Phys. Lett. 116 202101Google Scholar

    [15]

    Pettes M T, Jo I, Yao Z, Shi L 2011 Nano Lett. 11 1195Google Scholar

    [16]

    Liu H, Yang C, Wei B, Jin L, Alatas A, Said A, Tongay S, Yang F, Javey A, Hong J, Wu J 2020 Adv. Sci. 7 1902071Google Scholar

    [17]

    Shrestha R, Luan Y, Shin S, Zhang T, Luo X, Lundh J S, Gong W, Bockstaller M R, Choi S, Luo T, Chen R, Hippalgaonkar K, Shen S 2019 Sci. Adv. 5 eaax3777Google Scholar

    [18]

    Choe H S, Prabhakar R, Wehmeyer G, Allen F I, Lee W, Jin L, Li Y, Yang P, Qiu C W, Dames C, Scott M, Minor A, Bahk J H, Wu J 2019 Nano Lett. 19 3830Google Scholar

    [19]

    Choe H S, Li J, Zheng W, Lee J, Suh J, Allen F I, Liu H, Choi H J, Walukiewicz W, Zheng H, Wu J 2019 Appl. Phys. Lett. 114 152101Google Scholar

    [20]

    Park J, Bae K, Kim T R, Perez C, Sood A, Asheghi M, Goodson K E, Park W 2021 Adv. Sci. 8 2002876Google Scholar

    [21]

    Zhao Y, Zheng M, Wu J, Huang B, Thong J T L 2020 Nanotechnol. 31 225702Google Scholar

    [22]

    Madarasz F L, Lang J E, Szmulowicz F 1981 J. Electrochem. Soc. 128 2692Google Scholar

    [23]

    Wada H, Kamijoh T 1996 Jpn. J. Appl. Phys. 35 L648Google Scholar

    [24]

    Asheghi M, Kurabayashi K, Kasnavi R, Goodson K E 2002 J. Appl. Phys. 91 5079Google Scholar

    [25]

    Li D, Wu Y, Kim P, Shi L, Yang P, Majumdar A 2003 Appl. Phys. Lett. 83 2934Google Scholar

    [26]

    Alaie S, Goettler D F, Jiang Y B, Abbas K, Baboly M G, Anjum D H, Chaieb S, Leseman Z C 2015 Nanotechnol. 26 085704Google Scholar

    [27]

    Shrestha R, Li P, Chatterjee B, Zheng T, Wu X, Liu Z, Luo T, Choi S, Hippalgaonkar K, de Boer M P, Shen S 2018 Nat. Commun. 9 1664Google Scholar

    [28]

    Alaie S, Goettler D F, Abbas K, Su M F, Reinke C M, El-Kady I, Leseman Z C 2013 Rev. Sci. Instrum. 84 105003Google Scholar

    [29]

    Li D, Wu Y, Fan R, Yang P, Majumdar A 2003 Appl. Phys. Lett. 83 3186Google Scholar

    [30]

    Mavrokefalos A, Pettes M T, Zhou F, Shi L 2007 Rev. Sci. Instrum. 78 034901Google Scholar

    [31]

    Roh J, Hippalgaonkar K, Kang J, Lee S, Ham J, Chen R, Majumdar A, Kim W, Lee W 2010 3rd International Nanoelectronics Conference (INEC) January 3–8, 2010, Hong Kong, China p633

    [32]

    Lee S, Yang F, Suh J, Yang S, Lee Y, Li G, Sung Choe H, Suslu A, Chen Y, Ko C, Park J, Liu K, Li J, Hippalgaonkar K, Urban J J, Tongay S, Wu J 2015 Nat. Commun. 6 8573Google Scholar

    [33]

    Shi L, Li D Y, Yu C H, Jang W Y, Kim D, Yao Z, Kim P, Majumdar A 2003 J. Heat Transfer 125 881Google Scholar

    [34]

    An T H, Lim Y S, Park M J, Tak J Y, Lee S, Cho H K, Cho J Y, Park C, Seo W S 2016 APL Mater. 4 104812Google Scholar

    [35]

    Tang J, Wang H T, Lee D H, Fardy M, Huo Z, Russell T P, Yang P 2010 Nano Lett. 10 4279Google Scholar

    [36]

    Wingert M C, Chen Z C Y, Dechaumphai E, Moon J, Kim J H, Xiang J, Chen A R 2011 Nano Lett. 11 5507Google Scholar

    [37]

    Haras M, Lacatena V, Morini F, Robillard J F, Monfray S, Skotnicki T, Dubois E 2014 IEEE International Electr on Devices Meeting (IEDM) December 15–17, 2014, San Francisco, CA, USA p8.5.1

    [38]

    Lim J, Wang H T, Tang J, Andrews S C, So H, Lee J, Lee D H, Russell T P, Yang P 2016 ACS Nano 10 124Google Scholar

    [39]

    Holland M G 1963 Phys. Rev. 132 2461Google Scholar

  • [1] 郑建军, 张丽萍. 单层Cu2X(X=S,Se):具有低晶格热导率的优秀热电材料. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20220015
    [2] 陈上峰, 孙乃坤, 张宪民, 王凯, 李武, 韩艳, 吴丽君, 岱钦. Mn3As2掺杂Cd3As2纳米结构的制备及热电性能. 物理学报, 2022, 71(18): 187201. doi: 10.7498/aps.71.20220584
    [3] 胡威威, 孙进昌, 张玗, 龚悦, 范玉婷, 唐新峰, 谭刚健. 利用晶体结构工程提升GeSe化合物热电性能的研究. 物理学报, 2022, 71(4): 047101. doi: 10.7498/aps.71.20211843
    [4] 訾鹏, 白辉, 汪聪, 武煜天, 任培安, 陶奇睿, 吴劲松, 苏贤礼, 唐新峰. AgyIn3.33–y/3Se5化合物结构和热电性能. 物理学报, 2022, 71(11): 117101. doi: 10.7498/aps.71.20220179
    [5] 李梦荣, 应鹏展, 李勰, 崔教林. 采用熵工程技术改善SnTe基材料的热电性能. 物理学报, 2022, 71(23): 237302. doi: 10.7498/aps.71.20221247
    [6] 方文玉, 陈粤, 叶盼, 魏皓然, 肖兴林, 黎明锴, AhujaRajeev, 何云斌. 二维XO2 (X = Ni, Pd, Pt)弹性、电子结构和热导率. 物理学报, 2021, 70(24): 246301. doi: 10.7498/aps.70.20211015
    [7] 范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰. In1+xTe化合物的结构及热电性能研究. 物理学报, 2021, 70(13): 137102. doi: 10.7498/aps.70.20210041
    [8] 胡威威, 孙进昌, 张玗, 龚悦, 范玉婷, 唐新峰, 谭刚健. 利用晶体结构工程提升GeSe化合物热电性能的研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211843
    [9] 王莫凡, 应鹏展, 李勰, 崔教林. 多组元掺杂提升Cu3SbSe4基固溶体的热电性能. 物理学报, 2021, 70(10): 107303. doi: 10.7498/aps.70.20202094
    [10] 邹平, 吕丹, 徐桂英. 高压烧结制备Tb掺杂n型(Bi1–xTbx)2(Te0.9Se0.1)3合金及其微结构和热电性能. 物理学报, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [11] 孙政, 陈少平, 杨江锋, 孟庆森, 崔教林. 非等电子Sb替换Cu和Te后黄铜矿结构半导体Cu3Ga5Te9的热电性能. 物理学报, 2014, 63(5): 057201. doi: 10.7498/aps.63.057201
    [12] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究. 物理学报, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [13] 李静, 冯妍卉, 张欣欣, 黄丛亮, 杨穆. 考虑界面散射的金属纳米线热导率修正. 物理学报, 2013, 62(18): 186501. doi: 10.7498/aps.62.186501
    [14] 张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉. Cu掺杂AgSbTe2化合物的相稳定、晶体结构及热电性能. 物理学报, 2012, 61(8): 086101. doi: 10.7498/aps.61.086101
    [15] 张忻, 马旭颐, 张飞鹏, 武鹏旭, 路清梅, 刘燕琴, 张久兴. 纳米结构碲化铋合金的制备及电热输运特性. 物理学报, 2012, 61(4): 047201. doi: 10.7498/aps.61.047201
    [16] 杜保立, 徐静静, 鄢永高, 唐新峰. 非化学计量比AgSbTe2+x化合物制备及热电性能. 物理学报, 2011, 60(1): 018403. doi: 10.7498/aps.60.018403
    [17] 王善禹, 谢文杰, 李涵, 唐新峰. 熔体旋甩法合成n型(Bi0.85Sb0.15)2(Te1-xSex)3化合物的微结构及热电性能. 物理学报, 2010, 59(12): 8927-8933. doi: 10.7498/aps.59.8927
    [18] 许路加, 胡明, 杨海波, 杨孟琳, 张洁. 基于微结构参数建模的多孔硅绝热层热导率研究. 物理学报, 2010, 59(12): 8794-8800. doi: 10.7498/aps.59.8794
    [19] 苏贤礼, 唐新峰, 李涵. 熔体旋甩工艺对n型InSb化合物的微结构及热电性能的影响. 物理学报, 2010, 59(4): 2860-2866. doi: 10.7498/aps.59.2860
    [20] 苏贤礼, 唐新峰, 李 涵, 邓书康. Ga填充n型方钴矿化合物的结构及热电性能. 物理学报, 2008, 57(10): 6488-6493. doi: 10.7498/aps.57.6488
计量
  • 文章访问数:  3874
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-26
  • 修回日期:  2021-05-16
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-20

/

返回文章
返回