搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电荷守恒定律的航天器内带电三维仿真简化模型

原青云 孙永卫 张希军

引用本文:
Citation:

基于电荷守恒定律的航天器内带电三维仿真简化模型

原青云, 孙永卫, 张希军

A three-dimensional simplified simulation model based on charge conservation law for internal charging in spacecraft

Yuan Qing-Yun, Sun Yong-Wei, Zhang Xi-Jun
PDF
HTML
导出引用
  • 仿真模拟是开展航天器内带电风险评估的重要方法之一. 基于电荷守恒定律, 建立了内带电电位和电场三维计算模型, 给出了模型的一维稳态和瞬态求解算法及二维和三维求解方案, 设计了迭代算法来解耦电导率与电场强度, 并分析了该迭代算法的收敛性; 运用有限元算法和局部网格细化, 该模型具有方便考察关键点处电场畸变的优势; 与现有的辐射诱导电导率模型对比分析, 新模型更适合内带电三维数值计算; 与实验数据对比, 验证了内带电三维计算模型的正确性. 为解决航天器内介质带电评估问题提供了手段.
    The simulation is one of the important methods to evaluate the internal charging risk in spacecraft. In this paper, based on the charge conservation law, a three-dimensional calculation model of the potential and electric field of internal charging is established, and the one-dimensional steady state and transient solution algorithm and the two-dimensional and three-dimensional solution scheme of the model are given. An interative algorithm is designed to solve the required conductivity and the electric field intensity, and the convergence of the interative algorithm is analyzed. Using the finite element algorithm and the local mesh refinement, the model has the advantage of easily investigating the electric field distortion at key points. Comparing with the existing radiation-induced conductivity (RIC) model, due to the fact that the internal charging time constant is much higher than the charge capture time and the trap density in the dielectric is much higher than the charge density after the charge balance, the free charge will be rapidly converted into the captured charge. Therefore, it is unnecessary to consider the charge capture mechanism in the RIC model. The CCL model can be used to evaluate the internal charging and has higher computational efficiency. Comparing with the experimental data, the correctness of the three-dimensional calculation model is verified. It provides a means to evaluate the dielectric internal charging in spacecraft.
      通信作者: 原青云, qingyuny@163.com
    • 基金项目: 国家自然科学基金(批准号: 51577190)和电磁环境效应国家级重点实验室基金(批准号: 614220501020117)资助的课题
      Corresponding author: Yuan Qing-Yun, qingyuny@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51577190) and the National Key Laboratory of Electromagnetic Environment Effect Foundation of China (Grant No. 614220501020117)
    [1]

    Wrenn G L 1995 J. Spacecraft Rockets 32 514Google Scholar

    [2]

    Fredrickson A R 1996 IEEE Trans. Nucl. Sci. 43 426Google Scholar

    [3]

    Frederickson A R, Dennison J R 2003 IEEE Trans. Nucl. Sci. 50 2284Google Scholar

    [4]

    Han J, Huang J, Liu Z, Wang S 2005 J. Spacecraft Rockets 42 1061Google Scholar

    [5]

    Jun I, Garrett H B, Kim W 2008 IEEE Trans. Plasma Sci. 36 2467Google Scholar

    [6]

    Sorensen J D, Rodgers J 2000 IEEE Trans. Plasma Sci. 47 491

    [7]

    Weber K H 1964 Nucl. Instrum. Methods 25 261

    [8]

    Tabata T, Andreo P, Shinoda K 1998 Radiat. Phys. Chem. 53 205Google Scholar

    [9]

    Tabataa T, Andreob P, Shinodac K 1999 Radia. Phys. Chem. 54 11Google Scholar

    [10]

    焦维新, 濮祖荫 2000 中国科学(A辑) 30 136

    Jiao W X, Pu Z Y 2000 Science in China (Series A) 30 136

    [11]

    全荣辉, 张振龙, 韩建伟, 黄建国, 闫小娟 2013 物理学报 62 059401Google Scholar

    Quan R H, Zhang Z L, Han J W, Huang J G, Yan X J 2013 Acta Phys. Sin. 62 059401Google Scholar

    [12]

    孙建军, 张振龙, 梁伟, 岳赟, 杨涛, 韩建伟 2014 航天器环境工程 31 173Google Scholar

    Sun J J, Zhang Z L, Liang W, Yue Y, Yang T, Han J W 2014 Spacecraft Environment Engineering 31 173Google Scholar

    [13]

    全荣辉, 韩建伟, 黄建国, 张振龙 2007 物理学报 56 6642Google Scholar

    Quan R H, Han J W, Huang J G, Zhang Z L 2007 Acta Phys. Sin. 56 6642Google Scholar

    [14]

    黄建国, 陈东 2004 物理学报 53 961Google Scholar

    Huang J G, Chen D 2004 Acta Phys. Sin. 53 961Google Scholar

    [15]

    黄建国, 陈东 2004 地球物理学报 47 442

    Huang J G, Chen D 2004 Chin. J. Geophys. 47 442

    [16]

    乌江, 白婧婧, 沈宾, 郑晓泉 2010 中国空间科学技术 49

    Wu J, Bai J J, Shen B, Zheng X Q 2010 Chinese Space Science and Technology 49

    [17]

    秦晓刚, 贺德衍, 王骥 2009 物理学报 58 684Google Scholar

    Qing X G, He D Y, Wang J 2009 Acta Phys. Sin. 58 684Google Scholar

    [18]

    易忠, 王松, 唐小金, 武占成, 张超 2015 物理学报 64 125201Google Scholar

    Yi Z, Wang S, Tang X J, Wu Z C, Zhang C 2015 Acta Phys. Sin. 64 125201Google Scholar

    [19]

    王松, 易忠, 唐小金, 武占成, 孙永卫 2015 高电压技术 41 687

    Wang S, Yi Z, Tang X J, Wu Z C, Sun Y W 2015 High Voltage Engineering 41 687

    [20]

    秦晓刚 2010 博士学位论文(兰州: 兰州大学)

    Qing X G 2010 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese)

    [21]

    张振龙, 全荣辉, 韩建伟, 黄建国 2010 原子能科学技术 44 538

    Zhang Z L, Quan R H, Han J W, Huang J G 2010 Atomatic Energy Science and Technology 44 538

    [22]

    王松, 唐小金, 易忠, 武占成, 孙永卫 2016 原子能科学技术 50 1537Google Scholar

    Wang S, Tang X J, Yi Z, Wu Z C, Sun Y W 2016 Atomatic Energy Science and Technology 50 1537Google Scholar

    [23]

    周庆2013 硕士学位论文(长春: 吉林大学)

    Zhou Q 2013 M.S. Dissertation [Changchun: Jilin University) (in Chinese)

    [24]

    Adamec V, Calderwood J H 1975 J. Phys. D: Appl. Phys. 8 551Google Scholar

    [25]

    原青云, 王松 2018 物理学报 67 195201Google Scholar

    Yuan Q Y, Wang S 2018 Acta Phys. Sin. 67 195201Google Scholar

    [26]

    Sessler G M, Figueiredo M T, Leal Ferreira G F 2004 IEEE Trans. Dielectr. Electr. Insul. 11 192

    [27]

    苏京, 张丽新, 刘刚, 周博, 潘阳阳, 曹康丽 2018 上海航天 35 74

    Su J, Zhang L X, Liu G, Zhou B, Pan Y Y, Cao K L 2018 Aero-space Shanghai 35 74

    [28]

    Sessler G M 1992 IEEE Trans. Dielectr. Electr. Insul. 27 961Google Scholar

  • 图 1  内带电三维仿真方案

    Fig. 1.  3-D simulation scheme for internal charging.

    图 2  背面接地的平板内带电模型

    Fig. 2.  Internal charging model of back grounded planar board.

    图 3  时域有限差分计算过程的空间与时间离散

    Fig. 3.  Mesh on space and time domain in the finite difference time domain method.

    图 4  电导率的强电场效应图示(T = 293 K)

    Fig. 4.  Schema of conductivity enhance due to intense electric field (T = 293 K).

    图 5  迭代算法流程图

    Fig. 5.  Flowchart for the iterative algorithm.

    图 6  关键点处的网格加密和对应的电场分布

    Fig. 6.  Mesh refinement and the corresponding enlarged electric field.

    图 7  基于Comsol平台的内带电三维求解图示

    Fig. 7.  3-D computation of internal charging on the Comsol platform.

    图 8  利用插值函数导入Geant4的计算结果Qj

    Fig. 8.  Importing Qj of Geant4 into computation by interpolation function in Comsol.

    图 9  内带电数值计算设置

    Fig. 9.  Configurations of internal charging numerical simulation.

    图 10  时域充电电位对比(背面接地)

    Fig. 10.  Comparison of the charging potential in time domain.

    图 11  正面与双面接地情况下的电位对比

    Fig. 11.  Comparisons in cases of front &both surfaces grounding.

    图 12  电路板试样与外壳结构示意图

    Fig. 12.  Structure diagram of PCB sample and its crust.

    图 13  电路板内带电实验系统示意图

    Fig. 13.  Diagram of the experiment system for PCB internal charging.

    图 14  实验与仿真结果的对比

    Fig. 14.  Comparison of charging results from experiment and numerical simulation.

    表 1  CCL模型与RIC模型对比分析

    Table 1.  Comparison of CCL model and RIC model.

    类别充电机理数学表达式边界条件是否便于三维计算内带电计算效果
    CCL电荷守恒一元偏微分方程清晰一定条件下充电结果相同
    RIC电荷守恒与电荷俘获机制三元偏微分方程组较难设定
    下载: 导出CSV
  • [1]

    Wrenn G L 1995 J. Spacecraft Rockets 32 514Google Scholar

    [2]

    Fredrickson A R 1996 IEEE Trans. Nucl. Sci. 43 426Google Scholar

    [3]

    Frederickson A R, Dennison J R 2003 IEEE Trans. Nucl. Sci. 50 2284Google Scholar

    [4]

    Han J, Huang J, Liu Z, Wang S 2005 J. Spacecraft Rockets 42 1061Google Scholar

    [5]

    Jun I, Garrett H B, Kim W 2008 IEEE Trans. Plasma Sci. 36 2467Google Scholar

    [6]

    Sorensen J D, Rodgers J 2000 IEEE Trans. Plasma Sci. 47 491

    [7]

    Weber K H 1964 Nucl. Instrum. Methods 25 261

    [8]

    Tabata T, Andreo P, Shinoda K 1998 Radiat. Phys. Chem. 53 205Google Scholar

    [9]

    Tabataa T, Andreob P, Shinodac K 1999 Radia. Phys. Chem. 54 11Google Scholar

    [10]

    焦维新, 濮祖荫 2000 中国科学(A辑) 30 136

    Jiao W X, Pu Z Y 2000 Science in China (Series A) 30 136

    [11]

    全荣辉, 张振龙, 韩建伟, 黄建国, 闫小娟 2013 物理学报 62 059401Google Scholar

    Quan R H, Zhang Z L, Han J W, Huang J G, Yan X J 2013 Acta Phys. Sin. 62 059401Google Scholar

    [12]

    孙建军, 张振龙, 梁伟, 岳赟, 杨涛, 韩建伟 2014 航天器环境工程 31 173Google Scholar

    Sun J J, Zhang Z L, Liang W, Yue Y, Yang T, Han J W 2014 Spacecraft Environment Engineering 31 173Google Scholar

    [13]

    全荣辉, 韩建伟, 黄建国, 张振龙 2007 物理学报 56 6642Google Scholar

    Quan R H, Han J W, Huang J G, Zhang Z L 2007 Acta Phys. Sin. 56 6642Google Scholar

    [14]

    黄建国, 陈东 2004 物理学报 53 961Google Scholar

    Huang J G, Chen D 2004 Acta Phys. Sin. 53 961Google Scholar

    [15]

    黄建国, 陈东 2004 地球物理学报 47 442

    Huang J G, Chen D 2004 Chin. J. Geophys. 47 442

    [16]

    乌江, 白婧婧, 沈宾, 郑晓泉 2010 中国空间科学技术 49

    Wu J, Bai J J, Shen B, Zheng X Q 2010 Chinese Space Science and Technology 49

    [17]

    秦晓刚, 贺德衍, 王骥 2009 物理学报 58 684Google Scholar

    Qing X G, He D Y, Wang J 2009 Acta Phys. Sin. 58 684Google Scholar

    [18]

    易忠, 王松, 唐小金, 武占成, 张超 2015 物理学报 64 125201Google Scholar

    Yi Z, Wang S, Tang X J, Wu Z C, Zhang C 2015 Acta Phys. Sin. 64 125201Google Scholar

    [19]

    王松, 易忠, 唐小金, 武占成, 孙永卫 2015 高电压技术 41 687

    Wang S, Yi Z, Tang X J, Wu Z C, Sun Y W 2015 High Voltage Engineering 41 687

    [20]

    秦晓刚 2010 博士学位论文(兰州: 兰州大学)

    Qing X G 2010 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese)

    [21]

    张振龙, 全荣辉, 韩建伟, 黄建国 2010 原子能科学技术 44 538

    Zhang Z L, Quan R H, Han J W, Huang J G 2010 Atomatic Energy Science and Technology 44 538

    [22]

    王松, 唐小金, 易忠, 武占成, 孙永卫 2016 原子能科学技术 50 1537Google Scholar

    Wang S, Tang X J, Yi Z, Wu Z C, Sun Y W 2016 Atomatic Energy Science and Technology 50 1537Google Scholar

    [23]

    周庆2013 硕士学位论文(长春: 吉林大学)

    Zhou Q 2013 M.S. Dissertation [Changchun: Jilin University) (in Chinese)

    [24]

    Adamec V, Calderwood J H 1975 J. Phys. D: Appl. Phys. 8 551Google Scholar

    [25]

    原青云, 王松 2018 物理学报 67 195201Google Scholar

    Yuan Q Y, Wang S 2018 Acta Phys. Sin. 67 195201Google Scholar

    [26]

    Sessler G M, Figueiredo M T, Leal Ferreira G F 2004 IEEE Trans. Dielectr. Electr. Insul. 11 192

    [27]

    苏京, 张丽新, 刘刚, 周博, 潘阳阳, 曹康丽 2018 上海航天 35 74

    Su J, Zhang L X, Liu G, Zhou B, Pan Y Y, Cao K L 2018 Aero-space Shanghai 35 74

    [28]

    Sessler G M 1992 IEEE Trans. Dielectr. Electr. Insul. 27 961Google Scholar

  • [1] 庄杰, 韩瑞, 季振宇, 石富坤. 量化电导率模型参数多样性导致的脉冲电场消融预测的不确定性. 物理学报, 2023, 72(14): 147701. doi: 10.7498/aps.72.20230203
    [2] 苏剑宇, 方海燕, 包为民, 孙海峰, 赵良. 航天器处X射线脉冲星观测信号模拟方法. 物理学报, 2022, 71(22): 229701. doi: 10.7498/aps.71.20221097
    [3] 和琨, 郭秀娅, 张小盈, 汪垒. 方腔内电场强化固液相变传热. 物理学报, 2021, 70(14): 149101. doi: 10.7498/aps.70.20202127
    [4] 原青云, 王松. 一种新的航天器外露介质充电模型. 物理学报, 2018, 67(19): 195201. doi: 10.7498/aps.67.20180532
    [5] 孔新雷, 吴惠彬. Birkhoff系统的离散最优控制及其在航天器交会对接中的应用. 物理学报, 2017, 66(8): 084501. doi: 10.7498/aps.66.084501
    [6] 王松, 武占成, 唐小金, 孙永卫, 易忠. 聚酰亚胺电导率随温度和电场强度的变化规律. 物理学报, 2016, 65(2): 025201. doi: 10.7498/aps.65.025201
    [7] 易忠, 王松, 唐小金, 武占成, 张超. 不同温度下复杂介质结构内带电规律仿真分析. 物理学报, 2015, 64(12): 125201. doi: 10.7498/aps.64.125201
    [8] 秦利, 刘福才, 梁利环, 侯甜甜. 基于液体晃动干扰观测器的航天器混沌姿态H∞控制. 物理学报, 2014, 63(9): 090502. doi: 10.7498/aps.63.090502
    [9] 贾飞蕾, 徐伟, 李恒年, 侯黎强. 受扰航天器姿态动力学中参数未知的混沌运动控制. 物理学报, 2013, 62(10): 100503. doi: 10.7498/aps.62.100503
    [10] 曹鹤飞, 刘尚合, 孙永卫, 原青云. 航天器内部孤立导体表面带电面积效应研究. 物理学报, 2013, 62(14): 149402. doi: 10.7498/aps.62.149402
    [11] 杨勇, 孙伟强, 庄虔伟, 冯涛, 许胜勇, 解思深. 近场宽带电场耦合天线的高频结构模拟器软件仿真及性能分析. 物理学报, 2012, 61(20): 208401. doi: 10.7498/aps.61.208401
    [12] 黄建国, 韩建伟. 航天器内部充电效应及典型事例分析. 物理学报, 2010, 59(4): 2907-2913. doi: 10.7498/aps.59.2907
    [13] 黄建国, 韩建伟, 李宏伟, 蔡明辉, 李小银. 空间微小碎片对低轨道航天器太阳电池表面撞击损伤研究. 物理学报, 2008, 57(12): 7950-7954. doi: 10.7498/aps.57.7950
    [14] 冀子武, 鲁 云, 陈锦祥, 三野弘文, 秋本良一, 嶽山正二郎. 调制掺杂ZnSe/BeTe Ⅱ型量子阱结构中的内秉电场和新型带电激子. 物理学报, 2008, 57(2): 1214-1219. doi: 10.7498/aps.57.1214
    [15] 全荣辉, 韩建伟, 黄建国, 张振龙. 电介质材料辐射感应电导率的模型研究. 物理学报, 2007, 56(11): 6642-6647. doi: 10.7498/aps.56.6642
    [16] 黄凯, 王思慧, 施毅, 秦国毅, 张荣, 郑有炓. 内电场对纳米硅光致发光谱的影响. 物理学报, 2004, 53(4): 1236-1242. doi: 10.7498/aps.53.1236
    [17] 缪智武, 丁建文, 颜晓红, 唐娜斯. 畸变对hopping电导的影响:ThueMorse纳米结构模型. 物理学报, 2003, 52(5): 1213-1217. doi: 10.7498/aps.52.1213
    [18] 刘雪明, 张明德, 孙小菡. 熔融石英的热及电场诱导模型. 物理学报, 2000, 49(3): 538-543. doi: 10.7498/aps.49.538
    [19] 黄国松, 周烽, 顾绍庭, 张国轩, 陈泽兴. 钕玻璃圆筒激光器的热畸变. 物理学报, 1990, 39(3): 367-374. doi: 10.7498/aps.39.367
    [20] 严诚. 厚度、中温热处理和电场对a-Si:H的电导率激活能及其转折点的影响. 物理学报, 1982, 31(12): 62-74. doi: 10.7498/aps.31.62
计量
  • 文章访问数:  8167
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-28
  • 修回日期:  2019-07-08
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-05

/

返回文章
返回