搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙钛矿薄膜气相制备的晶粒尺寸优化及高效光伏转换

吴步军 林东旭 李征 程振平 李新 陈科 时婷婷 谢伟广 刘彭义

引用本文:
Citation:

钙钛矿薄膜气相制备的晶粒尺寸优化及高效光伏转换

吴步军, 林东旭, 李征, 程振平, 李新, 陈科, 时婷婷, 谢伟广, 刘彭义

Optimization of grain size to achieve high-performance perovskite solar cells in vapor deposition

Wu Bu-Jun, Lin Dong-Xu, Li Zheng, Cheng Zhen-Ping, Li Xin, Chen Ke, Shi Ting-Ting, Xie Wei-Guang, Liu Peng-Yi
PDF
HTML
导出引用
  • 钙钛矿薄膜的气相制备是一种极具潜力的工业化生产工艺, 但薄膜的质量控制目前远落后于溶液制备法. 本文通过建立PbI2薄膜向钙钛矿薄膜完全转化过程中反应时间、晶粒尺寸与温度的关系, 实现了薄膜的质量优化及大面积钙钛矿薄膜的制备, 将薄膜的平均晶粒粒径从0.42 ${\text{μm}}$优化到0.81 ${\text{μm}}$. 基于空间电荷限制电流模型对缺陷密度的研究显示, 钙钛矿薄膜的缺陷密度由5.90 × 1016 cm–3降低到2.66 × 1016 cm–3. 光伏器件(FTO/TiO2/C60/MAPbI3/spiro-OMeTAD/Au结构)测试显示, 面积为0.045 cm2器件的平均光电转换效率从14.00%提升到17.42%, 最佳光电转换效率达到17.80%, 迟滞因子减小至4.04%. 同时, 基于180 ℃制备的1 cm2器件的光电转换效率达到13.17%.
    Organometal halide perovskite is one of the most promising materials for high efficient thin-film solar cell. Solution fabrication process shows that the recorded power conversion efficiency (PCE) is 23.7%, however, large scale fabrication suffers the inevitable toxic solvent, preventing it from implementing the green commercialization. As one of the matured large-scale fabrication techniques, the vapor deposition is recently found to promise the green fabrication of perovskite thin film without toxic solvent. However, the PCE based on vapor deposition is considerably lower than that based on solution fabrication because of ineffective regulation methods of the perovskite films. So, there is intensive requirement for optimizing the growth of perovskite in vapor deposition for improving PCE, especially, developing a kind of quality regulation method of the perovskite films. In this study, we provide a method of adjusting grain size in vapor deposition method. The grain size optimization of MAPbI3 films is realized by simply modulating the reaction temperature between PbI2 films and MAI vapor. We set the reaction temperature to be 140 ℃, 160 ℃, 180 ℃ and 200 ℃ separately and establish the relationship between reaction time and grain size during the complete conversion of PbI2 film into MAPbI3 film. We find that the average grain size of the film increases first with growth temperature increasing from 140 ℃ to 180 ℃ and then decrease at 200 ℃, giving an average grain size of 0.81 ${\text{μm}}$ and a largest grain size of about 2 ${\text{μm}}$ at 180 ℃. The defect density of perovskite film is deduced from the space charge limited current model, showing that it decreases from 5.90 × 1016 cm–3 at 140 ℃ to 2.66 × 1016 cm–3 at 180 ℃. Photovoltaic devices with structure FTO/TiO2/C60/MAPbI3/spiro-OMeTAD/Au are fabricated to demonstrate the performance. It is found that the devices with an active area of 0.045 cm2 show that with the increase of grain size, the average PCE increases from 14.00% to 17.42%, and the best device shows that its PCE is 17.80% with 4.04% hysteresis index. To show the possibility of scaling up, we fabricate a uniform perovskite thin film with an area of about 72 cm2, and a device with an active area of 1 cm2, which gives a PCE of 13.17% in reverse scan. In summary, our research provides a method of regulating the grain size for the vapor deposition, which can improve device performance by reducing the trap density in perovskite film for suppressing the carrier recombination in grain boundary. Meanwhile, we prepare high performance devices and large area thin films, showing their potential in large area device fabrication and applications.
      通信作者: 谢伟广, wgxie@email.jnu.edu.cn ; 刘彭义, tlpy@jnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61674070, 11574119, 11804117)和中央高校基本科研业务费专项资金资助(暨南大学科研培养与创新基金)(批准号: 21618313) 资助的课题.
      Corresponding author: Xie Wei-Guang, wgxie@email.jnu.edu.cn ; Liu Peng-Yi, tlpy@jnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61674070, 11574119, 11804117) and the Fundamental Research Funds for the Central Universities, China (Grants No. 21618313).
    [1]

    Yin W J, Shi T, Yan Y 2014 Adv. Mater. 26 4653Google Scholar

    [2]

    De Wolf S, Holovsky J, Moon S J, Loper P, Niesen B, Ledinsky M, Haug F J, Yum J H, Ballif C 2014 J. Phys. Chem. Lett. 5 1035Google Scholar

    [3]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nature Photon. 8 506Google Scholar

    [4]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [5]

    Correa-Baena J P, Saliba M, Buonassisi T, Grätzel M, Abate A, Tress W, Hagfeldt A 2017 Sicence 358 739Google Scholar

    [6]

    吴存存, 孙伟海, 陈志坚, 肖立新 2017 科学通报 62 1457

    Wu C C, Sun W H, Chen Z J, Xiao L X 2017 Chin. Sci. Bull. 62 1457

    [7]

    杨旭东, 陈汉, 毕恩兵, 韩礼元 2015 物理学报 64 038404Google Scholar

    Yang X D, Chen H, Bi E B, Han L Y 2015 Acta Phys. Sin. 64 038404Google Scholar

    [8]

    杨迎国, 阴广志, 冯尚蕾, 李萌, 季庚午, 宋飞, 文闻, 高兴宇 2017 物理学报 66 018401Google Scholar

    Yang Y G, Yin G Z, Feng S L, Li M, Ji G W, Song F, Wen W, Gao X Y 2017 Acta Phys. Sin. 66 018401Google Scholar

    [9]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [10]

    Chen Q, Zhou H P, Hong Z R, Luo S, Duan H S, Wang H H, Liu Y S, Li G, Yang Y 2014 J. Am. Chem. Soc. 136 622Google Scholar

    [11]

    Hsiao S Y, Lin H L, Lee W H, Tsai W L, Chiang K M, Liao W Y, Zheng C, Wu R Z, Chen C Y, Lin H W 2016 Adv. Mater. 28 7013Google Scholar

    [12]

    Chen C Y, Lin H Y, Chiang K M, Tsai W L, Huang Y C, Tsao C S, Lin H W 2017 Adv. Mater. 29 1605290Google Scholar

    [13]

    Long M Z, Zhang T K, Liu M Z, Chen Z F, Wang C, Xie W G, Xie F Y, Chen J, Li G, Xu J B 2018 Adv. Mater. 30 1801562Google Scholar

    [14]

    Tong G Q, Li H, Li G P, Zhang T, Li C D, Yu L W, Xu J, Jiang Y, Shi Y, Chen K J 2018 Nano Energy 48 536Google Scholar

    [15]

    Zhu X J, Yang D, Yang R X, Yang B, Yang Z, Ren X D, Zhang J, Niu J Z, Feng J S, Liu S Z 2017 Nanoscale 9 12316Google Scholar

    [16]

    Niu T Q, Lu J, Munir R, Li J B, Barrit D, Zhang X, Hu H L, Yang Z, Amassian A, Zhao K, Liu S Z 2018 Adv. Mater. 30 1706576Google Scholar

    [17]

    Seok S I, Kim E K, Noh J H 2017 Science 356 1376Google Scholar

    [18]

    Li X, Chen C C, Cai M, Hua X, Xie F, Liu X, Hua J, Long Y T, Tian H, Han L 2018 Adv. Energy Mater. 8 1800715Google Scholar

    [19]

    Han Q, Bai Y, Liu J, Du K Z, Li T, Ji D, Zhou Y, Cao C, Shin D, Ding J, Franklin A D, Glass J T, Hu J, Therien M J, Liu J, Mitzi D B 2017 Energy Environ. Sci. 10 2365Google Scholar

    [20]

    王栋, 朱慧敏, 周忠敏, 王在伟, 吕思刘, 逄淑平, 崔光磊 2015 物理学报 64 038403Google Scholar

    Wang D, Zhu H M, Zhou Z M, Wang Z W, Lü S L, Pang S P, Cui G L 2015 Acta Phys. Sin. 64 038403Google Scholar

    [21]

    杜相, 陈思, 林东旭, 谢方艳, 陈建, 谢伟广, 刘彭义 2018 物理学报 67 098801Google Scholar

    Du X, Chen S, Lin D X, Xie F Y, Chen J, Xie W G, Liu P Y 2018 Acta Phys. Sin. 67 098801Google Scholar

    [22]

    Tavakoli M M, Simchi A, Mo X, Fan Z 2017 Mater. Chem. Front. 1 1520Google Scholar

    [23]

    Yue S Z, Liu K, Xu R, Li M C, Azam M, Ren K, Liu J, Sun Y, Wang Z J, Cao D W, Yan X H, Qu S C, Lei Y, Wang Z G 2017 Energy Environ. Sci. 10 2570

    [24]

    Zhang T K, Long M Z, Qin M C, Lu X H, Chen S, Xie F Y, Gong L, Chen J, Chu M, Miao Q, Chen Z F, Xu W Y, Liu P Y, Xie W G, Xu J B 2018 Joule 2 1Google Scholar

    [25]

    Zhang T K, Long M Z, Yan K Y, Qin M C, Lu X H, Zeng X L, Cheng C M, Wong K S, Liu P Y, Xie W G, Xu J B 2017 Adv. Energy Mater. 7 1700118Google Scholar

    [26]

    Shao Y C, Fang Y J, Li T, Wang Q, Dong Q F, Deng Y H, Yuan Y B, Wei H T, Wang M Y, Gruverman A, Shield J, Huang J S 2016 Energy Environ. Sci. 9 1752Google Scholar

  • 图 1  钙钛矿薄膜的气相制备流程及效果 (a)两步钙钛矿薄膜气相制备流程示意图; (b)PbI2与MAI气体反应示意图; (c)器件SEM截面图

    Fig. 1.  Vapor growth of perovskite film: (a) Schematic growth processes of two-step vapor growth of perovskite films; (b) reaction schematic between the PbI2 structure and the MAI molecule; (c) the cross-sectional morphology of the as-prepared device.

    图 2  不同反应温度下钙钛矿薄膜的表征 (a)薄膜的XRD图谱; (b)不同反应温度下PbI2向MAPbI3完全转化所需的时间; (c)薄膜的吸收图谱

    Fig. 2.  (a) The XRD patterns; (b) reaction time for fully conversion of PbI2 to MAPbI3 under different reaction temperature; (c) UV-vis spectra of perovskite films synthesized under different temperature.

    图 3  温度对钙钛矿薄膜形态的影响 (a)—(d)反应温度分别为140 ℃, 160 ℃, 180 ℃以及200 ℃时制备的钙钛矿的SEM形貌图(白色线段长度为1 ${\text{μm}}$); (e)不同反应温度下的钙钛矿薄膜晶体粒径统计; (f)气相法制备面积约72 cm2的MAPbI3薄膜

    Fig. 3.  Reaction temperature effect on the morphology of perovskite film: (a)–(d) SEM images of perovskite films with reaction temperature of (a) 140 ℃, (b) 160 ℃, (c) 180 ℃ and (d) 200 ℃ (the scale bars in the SEM images are 1 ${\text{μm}}$); (e) statistics of grain size under different reaction temperature; (f) as prepared MAPbI3 film with area about 72 cm2.

    图 4  钙钛矿薄膜的缺陷密度测试 (a) 140 ℃; (b) 160 ℃; (c) 180 ℃; (d) 200 ℃

    Fig. 4.  Trap density measurement in perovskite synthesized under different temperature: (a) 140 ℃; (b) 160 ℃; (c) 180 ℃ and (d) 200 ℃.

    图 5  钙钛矿光伏器件性能 (a)标准光照下面积为0.045 cm2器件的J-V曲线; (b)多组器件效率的统计结果; (c)面积为0.045 cm2器件180 ℃下制备的器件回滞曲线; (d)面积为0.045 cm2器件140 ℃下制备的器件回滞曲线; (e)面积为1 cm2 器件180 ℃下制备的器件J-V曲线; (f) 1 cm2 器件的光学图片

    Fig. 5.  Device performance of perovskite photovoltaic devices: (a) 0.045 cm2 device reverse J-V curves under 1 Sun AM 1.5 G; (b) statistical distribution of PCE; reverse and forward J-V curves of devices (0.045 cm2) grown at (c) 180 ℃ and (d) 140 ℃; (e) reverse and forward J-V curves of device (1 cm2) grown at 180 ℃ and (f) corresponding optical image.

    表 1  不同反应温度的器件具体性能参数以及统计值

    Table 1.  Characteristic parameters and statistical result of PSCs.

    Sythesis temperature Jsc/mA·cm-2 Voc/V FF/% Champion PCE/% Average PCE/%
    140 22.04 0.99 66.31 14.47 14.00
    160 22.25 1 70.51 15.69 14.93
    180 23.47 1.02 74.35 17.80 17.42
    200 22.75 1.03 70.88 16.61 16.13
    下载: 导出CSV
  • [1]

    Yin W J, Shi T, Yan Y 2014 Adv. Mater. 26 4653Google Scholar

    [2]

    De Wolf S, Holovsky J, Moon S J, Loper P, Niesen B, Ledinsky M, Haug F J, Yum J H, Ballif C 2014 J. Phys. Chem. Lett. 5 1035Google Scholar

    [3]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nature Photon. 8 506Google Scholar

    [4]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [5]

    Correa-Baena J P, Saliba M, Buonassisi T, Grätzel M, Abate A, Tress W, Hagfeldt A 2017 Sicence 358 739Google Scholar

    [6]

    吴存存, 孙伟海, 陈志坚, 肖立新 2017 科学通报 62 1457

    Wu C C, Sun W H, Chen Z J, Xiao L X 2017 Chin. Sci. Bull. 62 1457

    [7]

    杨旭东, 陈汉, 毕恩兵, 韩礼元 2015 物理学报 64 038404Google Scholar

    Yang X D, Chen H, Bi E B, Han L Y 2015 Acta Phys. Sin. 64 038404Google Scholar

    [8]

    杨迎国, 阴广志, 冯尚蕾, 李萌, 季庚午, 宋飞, 文闻, 高兴宇 2017 物理学报 66 018401Google Scholar

    Yang Y G, Yin G Z, Feng S L, Li M, Ji G W, Song F, Wen W, Gao X Y 2017 Acta Phys. Sin. 66 018401Google Scholar

    [9]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [10]

    Chen Q, Zhou H P, Hong Z R, Luo S, Duan H S, Wang H H, Liu Y S, Li G, Yang Y 2014 J. Am. Chem. Soc. 136 622Google Scholar

    [11]

    Hsiao S Y, Lin H L, Lee W H, Tsai W L, Chiang K M, Liao W Y, Zheng C, Wu R Z, Chen C Y, Lin H W 2016 Adv. Mater. 28 7013Google Scholar

    [12]

    Chen C Y, Lin H Y, Chiang K M, Tsai W L, Huang Y C, Tsao C S, Lin H W 2017 Adv. Mater. 29 1605290Google Scholar

    [13]

    Long M Z, Zhang T K, Liu M Z, Chen Z F, Wang C, Xie W G, Xie F Y, Chen J, Li G, Xu J B 2018 Adv. Mater. 30 1801562Google Scholar

    [14]

    Tong G Q, Li H, Li G P, Zhang T, Li C D, Yu L W, Xu J, Jiang Y, Shi Y, Chen K J 2018 Nano Energy 48 536Google Scholar

    [15]

    Zhu X J, Yang D, Yang R X, Yang B, Yang Z, Ren X D, Zhang J, Niu J Z, Feng J S, Liu S Z 2017 Nanoscale 9 12316Google Scholar

    [16]

    Niu T Q, Lu J, Munir R, Li J B, Barrit D, Zhang X, Hu H L, Yang Z, Amassian A, Zhao K, Liu S Z 2018 Adv. Mater. 30 1706576Google Scholar

    [17]

    Seok S I, Kim E K, Noh J H 2017 Science 356 1376Google Scholar

    [18]

    Li X, Chen C C, Cai M, Hua X, Xie F, Liu X, Hua J, Long Y T, Tian H, Han L 2018 Adv. Energy Mater. 8 1800715Google Scholar

    [19]

    Han Q, Bai Y, Liu J, Du K Z, Li T, Ji D, Zhou Y, Cao C, Shin D, Ding J, Franklin A D, Glass J T, Hu J, Therien M J, Liu J, Mitzi D B 2017 Energy Environ. Sci. 10 2365Google Scholar

    [20]

    王栋, 朱慧敏, 周忠敏, 王在伟, 吕思刘, 逄淑平, 崔光磊 2015 物理学报 64 038403Google Scholar

    Wang D, Zhu H M, Zhou Z M, Wang Z W, Lü S L, Pang S P, Cui G L 2015 Acta Phys. Sin. 64 038403Google Scholar

    [21]

    杜相, 陈思, 林东旭, 谢方艳, 陈建, 谢伟广, 刘彭义 2018 物理学报 67 098801Google Scholar

    Du X, Chen S, Lin D X, Xie F Y, Chen J, Xie W G, Liu P Y 2018 Acta Phys. Sin. 67 098801Google Scholar

    [22]

    Tavakoli M M, Simchi A, Mo X, Fan Z 2017 Mater. Chem. Front. 1 1520Google Scholar

    [23]

    Yue S Z, Liu K, Xu R, Li M C, Azam M, Ren K, Liu J, Sun Y, Wang Z J, Cao D W, Yan X H, Qu S C, Lei Y, Wang Z G 2017 Energy Environ. Sci. 10 2570

    [24]

    Zhang T K, Long M Z, Qin M C, Lu X H, Chen S, Xie F Y, Gong L, Chen J, Chu M, Miao Q, Chen Z F, Xu W Y, Liu P Y, Xie W G, Xu J B 2018 Joule 2 1Google Scholar

    [25]

    Zhang T K, Long M Z, Yan K Y, Qin M C, Lu X H, Zeng X L, Cheng C M, Wong K S, Liu P Y, Xie W G, Xu J B 2017 Adv. Energy Mater. 7 1700118Google Scholar

    [26]

    Shao Y C, Fang Y J, Li T, Wang Q, Dong Q F, Deng Y H, Yuan Y B, Wei H T, Wang M Y, Gruverman A, Shield J, Huang J S 2016 Energy Environ. Sci. 9 1752Google Scholar

  • [1] 瞿子涵, 赵洋, 马飞, 游经碧. 原子层沉积金属氧化物缓冲层制备高性能大面积钙钛矿太阳电池. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240218
    [2] 王静, 高姗, 段香梅, 尹万健. 钙钛矿太阳能电池材料缺陷对器件性能与稳定性的影响. 物理学报, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [3] 韩晓静, 杨静, 张佳莉, 刘冬雪, 石标, 王鹏阳, 赵颖, 张晓丹. 反应等离子体沉积二氧化锡电子传输层及其在钙钛矿太阳电池中的应用. 物理学报, 2023, 72(17): 178401. doi: 10.7498/aps.72.20230693
    [4] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓. 高压下缺陷对锐钛矿相TiO2多晶电输运性能的影响: 交流阻抗测量. 物理学报, 2023, 72(12): 126401. doi: 10.7498/aps.72.20230020
    [5] 何安, 薛存. 缺陷调控临界温度梯度超导膜的磁通整流反转效应. 物理学报, 2022, 71(2): 027401. doi: 10.7498/aps.71.20211157
    [6] 韩梅斗雪, 王雅, 王荣波, 赵均陶, 任慧志, 侯国付, 赵颖, 张晓丹, 丁毅. 锂掺杂提高硫氰酸亚铜的电学特性及在钙钛矿太阳电池中的应用. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221222
    [7] 韩梅斗雪, 王雅, 王荣波, 赵均陶, 任慧志, 侯国付, 赵颖, 张晓丹, 丁毅. 锂掺杂提高硫氰酸亚铜的电学特性及在钙钛矿太阳电池中的应用. 物理学报, 2022, 71(21): 217801. doi: 10.7498/aps.71.20221222
    [8] 李燕, 贺红, 党威武, 陈雪莲, 孙璨, 郑嘉璐. 钙钛矿太阳电池中各功能层的光辐照稳定性研究进展. 物理学报, 2021, 70(9): 098402. doi: 10.7498/aps.70.20201762
    [9] 卢辉东, 韩红静, 刘杰. FA1–xCsx PbI3–y Bry钙钛矿材料优化及太阳电池性能计算. 物理学报, 2021, 70(3): 036301. doi: 10.7498/aps.70.20201387
    [10] 卢辉东, 韩红静, 刘杰. 有机铅碘钙钛矿太阳电池结构优化及光电性能计算. 物理学报, 2021, 70(16): 168802. doi: 10.7498/aps.70.20210134
    [11] 徐婷, 王子帅, 李炫华, 沙威. 基于等效电路模型的钙钛矿太阳电池效率损失机理分析. 物理学报, 2021, 70(9): 098801. doi: 10.7498/aps.70.20201975
    [12] 崔兴华, 许巧静, 石标, 侯福华, 赵颖, 张晓丹. 宽带隙钙钛矿材料及太阳电池的研究进展. 物理学报, 2020, 69(20): 207401. doi: 10.7498/aps.69.20200822
    [13] 尹媛, 李玲, 尹万健. 太阳能电池材料缺陷的理论与计算研究. 物理学报, 2020, 69(17): 177101. doi: 10.7498/aps.69.20200656
    [14] 梁晓娟, 曹宇, 蔡宏琨, 苏健, 倪牮, 李娟, 张建军. 肖特基钙钛矿太阳电池结构设计与优化. 物理学报, 2020, 69(5): 057901. doi: 10.7498/aps.69.20191891
    [15] 陈永亮, 唐亚文, 陈沛润, 张力, 刘琪, 赵颖, 黄茜, 张晓丹. 钙钛矿太阳电池中的缓冲层研究进展. 物理学报, 2020, 69(13): 138401. doi: 10.7498/aps.69.20200543
    [16] 李少华, 李海涛, 江亚晓, 涂丽敏, 李文标, 潘玲, 杨仕娥, 陈永生. 高效平面异质结有机-无机杂化钙钛矿太阳电池的质量管理. 物理学报, 2018, 67(15): 158801. doi: 10.7498/aps.67.20172600
    [17] 王军霞, 毕卓能, 梁柱荣, 徐雪青. 新型碳材料在钙钛矿太阳电池中的应用研究进展. 物理学报, 2016, 65(5): 058801. doi: 10.7498/aps.65.058801
    [18] 王福芝, 谭占鳌, 戴松元, 李永舫. 平面异质结有机-无机杂化钙钛矿太阳电池研究进展. 物理学报, 2015, 64(3): 038401. doi: 10.7498/aps.64.038401
    [19] 刘柏年, 马颖, 周益春. 四方相BaTiO3缺陷性质的第一性原理计算. 物理学报, 2010, 59(5): 3377-3383. doi: 10.7498/aps.59.3377
    [20] 郑 晴, 赵晓鹏, 李明明, 赵 晶. 缺陷对左手材料负折射的调控行为. 物理学报, 2006, 55(12): 6441-6446. doi: 10.7498/aps.55.6441
计量
  • 文章访问数:  9712
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-18
  • 修回日期:  2019-01-25
  • 上网日期:  2019-03-23
  • 刊出日期:  2019-04-05

/

返回文章
返回