搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

给体位置和数目对四苯基乙烯衍生物双光子吸收性质的影响

赵珂 宋军 张瀚

引用本文:
Citation:

给体位置和数目对四苯基乙烯衍生物双光子吸收性质的影响

赵珂, 宋军, 张瀚

Effects of donor position and number on two-photon absorption properties of tetraphenylethylene derivatives

Zhao Ke, Song Jun, Zhang Han
PDF
HTML
导出引用
  • 在杂化密度泛函水平上, 利用响应函数方法, 计算了一类四苯基乙烯衍生物的双光子吸收性质. 考虑了四苯基乙烯上给电子基团的位置和数目对双光子吸收性质的影响. 并且, 根据实验者采用的分子, 通过增加分子的平面性和共轭长度, 以及增强给体强度, 理论设计了三种分子结构, 并计算了它们的双光子吸收性质. 结果表明, 给体位置和数目对双光子吸收性质有重要影响. 位于分子末端的给体取代基能有效提高双光子吸收强度. 随着给体数目的增加, 双光子吸收波长发生红移. 在四苯基乙烯的不同侧位上添加给体取代基对双光子吸收性质的影响有明显差异. 与实验者采用的分子相比, 理论设计的分子结构双光子吸收截面均明显增大. 当三苯胺基代替四苯基乙烯基之后, 双光子吸收峰发生较大红移, 双光子吸收截面明显增大.
    Organic materials with strong two-photon absorption response and aggregation induced emission have aroused a great deal of interest in recent years, for their many potential applications such as two-photon fluorescence microscopy, up-conversion laser, photodynamic therapy, etc. The tetraphenylethylene units are usually employed in two-photon absorption and aggregation induced emission materials because of their good electron-donating capability and special propeller starburst structures. Theoretical study on the relationship between molecular structure and two-photon absorption property is of great importance for guiding the experimental design and synthesis of functional materials. In this paper, the two-photon absorption properties of a series of organic molecules containing tetraphenylethylene and cyano groups are studied by employing the density functional response theory in combination with the polarizable continuum model. The molecular geometries are optimized at a hybrid B3LYP level with 6-31g(d, p) basis set in the Gaussian 16 program. The two-photon absorption cross sections are calculated by response theory through using the CAM-B3LYP functional with 6-31g(d) basis set in the Dalton program. The effect of donor position and number on two-photon absorption properties are investigated. In addition, by increasing the planarity and conjugated length of the molecule, as well as by enhancing the strength of the electron donor, we design three molecular structures and calculate their two-photon absorption properties. The results show that the donor position and number have important effects on two-photon absorption properties. The methoxy donor at the end of the molecule can increase the two-photon absorption intensity effectively. As the number of substituents increases, the position of the two-photon absorption peak is red-shifted. The effects of adding electron donor groups on different side positions have a significant difference in the two-photon absorption property. Comparing with the experimental molecules, the two-photon absorption cross sections of the designed molecules are greatly enhanced. When the tetraphenylethylene group is replaced by the triphenylamine group, the two-photon absorption peak is greatly red-shifted, and the two-photon absorption intensity is significantly increased. Since all of these molecules contain tetraphenylethylene or triphenylamine group with propeller structure, they can have both two-photon absorption and aggregation induced emission properties. This study provides theoretical guidelines for synthesizing a new type of active two-photon absorption and aggregation induced emission material.
      通信作者: 赵珂, zhaoke@sdnu.edu.cn
    • 基金项目: 山东省自然科学基金(批准号: ZR2014AM026)资助的课题
      Corresponding author: Zhao Ke, zhaoke@sdnu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2014AM026)
    [1]

    Kim S, Zheng Q, He G S, Bharali D J, Pudavar H E, Baev A, Prasad P N 2006 Adv. Funct. Mater. 16 2317

    [2]

    Kim S, Pudavar H E, Bonoiu A, Prasad P N 2007 Adv. Mater. 19 3791

    [3]

    Hu R, Maldonado J, Rodriguez M, Deng C, Jim C W, Lam J Y, Yuen M F, Ramos-Ortiz G, Tang B Z 2012 J. Mater. Chem. 22 232Google Scholar

    [4]

    Zhang Y, Li J, Tang B Z, Wong K S 2014 J. Phys. Chem. C 118 26981

    [5]

    Jiang Y, Wang Y, Hua J, Tang J, Li B, Qian S, Tian H 2010 Chem. Commun. 46 4689Google Scholar

    [6]

    Wang B, Wang Y, Hua J, Jiang Y, Huang J, Qian S, Tian H 2011 Chem. Eur. J. 17 2647Google Scholar

    [7]

    Xu B, Xie M, He J, Xu B, Chi Z, Tian W, Jiang L, Zhao F, Liu S, Zhang Y 2013 Chem. Commun. 49 273Google Scholar

    [8]

    Jiang T, Qu Y, Li B, Gao Y, Hua J 2015 RSC Adv. 5 1500

    [9]

    Qu C, Gao Z, Chen Y 2018 J. Lumin. 194 40Google Scholar

    [10]

    Gu B, Wu W, Xu G, Feng G, Yin F, Chong P H J, Qu J, Yong K T, Liu B 2017 Adv. Mater. 29 1701076Google Scholar

    [11]

    He G S, Tan L S, Zheng Q, Prasad P N 2008 Chem. Rev. 108 1245Google Scholar

    [12]

    Pawlicki M, Collins H A, Denning R G, Anderson H L 2009 Angew. Chem. Int. Ed. 48 3244Google Scholar

    [13]

    Hong Y, Lam J W Y, Tang B Z 2009 Chem. Commun. 29 4332

    [14]

    Hong Y, Lam J W Y, Tang B Z 2011 Chem. Soc. Rev. 40 5361Google Scholar

    [15]

    Wang F Q, Zhao K, Zhu M Y, Wang C K 2016 J. Phys. Chem. B 120 9708Google Scholar

    [16]

    Song J, Zhao K, Zhang H, Wang C K 2019 Mol. Phys. 117 672Google Scholar

    [17]

    Katan C, Terenziani F, Mongin O, Werts M H V, Porrès L,Pons T, Mertz J, Tretiak S, Blancharddesce M 2005 J. Phys. Chem. A 109 3024Google Scholar

    [18]

    Terenziani F, Morone M, Gmouh S, Blancharddesce M 2006 Chem. Phys. Chem. 7 685Google Scholar

    [19]

    Chattopadhyaya M, Alam M M, Chakrabarti S 2011 J. Phys. Chem. A 115 2607Google Scholar

    [20]

    Luo Y, Norman P, Macak P, Ågren H 2000 J. Phys. Chem. A 104 4718Google Scholar

    [21]

    Olsen J, Jørgensen P 1985 J. Chem. Phys. 82 3235Google Scholar

    [22]

    Monson P R, Mcclain W M 1970 J. Chem. Phys. 53 29Google Scholar

    [23]

    Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT, 2016 http://www.gaussian.com/ [2019-3-31]

    [24]

    Dalton, a Molecular Electronic Structure Program, Release DALTON2013.0, 2013 http://daltonprogram.org/ [2019-3-31]

    [25]

    Zhao K, Liu P W, Wang C K, Luo Y 2010 J. Phys. Chem. B 114 10814Google Scholar

    [26]

    武香莲, 赵珂, 贾海洪, 王富青 2015 物理学报 64 233301Google Scholar

    Wu X L, Zhao K, Jia H H, Wang F Q 2015 Acta Phys. Sin. 64 233301Google Scholar

    [27]

    Zhu M Y, Zhao K, Song J, Wang C K 2018 Chin. Phys. B 27 023302Google Scholar

    [28]

    Zhao K, Song J, Zhu M Y, Zhang H, Wang C K 2018 Chin. Phys. B 27 103301Google Scholar

    [29]

    Zhang Y J, Zhang Q Y, Ding H J, Song X N, Wang C K 2015 Chin. Phys. B 24 023301Google Scholar

    [30]

    Chung S J, Kim K S, Lin T C, He G S, Swiatkiewicz J, Prasad P N 1999 J. Phys. Chem. B. 103 10741Google Scholar

    [31]

    Adronov A, Fréchet J M J, He G S, Kim K S, Chung S J, Swiatkiewicz J, Prasad P N 2000 Chem. Mater. 12 2838Google Scholar

    [32]

    Chung S J, Lin T C, Kim K S, He G S, Swiatkiewicz J, Prasad P N, Baker G A, Bright F V 2001 Chem. Mater. 13 4071Google Scholar

  • 图 1  T和T1−T5分子的化学结构式

    Fig. 1.  Chemical structures of T and T1−T5 molecules.

    图 2  优化的T和T1−T5分子的结构

    Fig. 2.  Optimized geometries of the T and T1−T5 molecules

    图 3  R, S和U分子的化学结构式和优化的几何结构

    Fig. 3.  Chemical structures and optimized geometries of the R, S and U molecules.

    图 4  T分子的A和B两部分

    Fig. 4.  The A and B parts of the T molecule.

    图 5  X, Y和Z分子的化学结构式和优化几何结构

    Fig. 5.  Chemical structures and optimized geometries of the X, Y and Z molecules.

    图 6  X, Y, Z和T分子的TPA谱

    Fig. 6.  TPA spectra of the X, Y, Z and T molecules.

    表 1  分子六个最低激发态的TPA波长${\lambda _{{\rm{tp}}}}$(nm)和TPA截面$\sigma $(GM)

    Table 1.  The TPA wavelength ${\lambda _{{\rm{tp}}}}$(nm) and the TPA cross section $\sigma $(GM) of the lowest six excited states.

    TT1T2T3T4T5
    ${\lambda _{{\rm{tp}}}}$/nm$\sigma $/GM${\lambda _{{\rm{tp}}}}$/nm$\sigma $/GM${\lambda _{{\rm{tp}}}}$/nm$\sigma $/GM${\lambda _{{\rm{tp}}}}$/nm$\sigma $/GM${\lambda _{{\rm{tp}}}}$/nm$\sigma $/GM${\lambda _{{\rm{tp}}}}$/nm$\sigma $/GM
    S1743719743696740707738672743638743629
    S26504649265110651665286534
    S3612944612858614893612873615880615827
    S4572305572334578212575259578136580175
    S5556355655574556555745575
    S65401554095422540554235412
    下载: 导出CSV

    表 2  分子六个最低激发态的TPA波长${\lambda _{{\rm{tp}}}}$(nm)和TPA截面$\sigma $(GM)

    Table 2.  The TPA wavelength ${\lambda _{{\rm{tp}}}}$(nm) and the TPA cross section $\sigma $(GM) of the lowest six excited states.

    RSU
    ${\lambda _{{\rm{tp}}}}$/nm$\sigma $/GM${\lambda _{{\rm{tp}}}}$/nm$\sigma $/GM${\lambda _{{\rm{tp}}}}$/nm$\sigma $/GM
    S1719500729646754769
    S263127642196587
    S3595597603785621931
    S45574567640580118
    S555685355745574
    S6540995412954111
    下载: 导出CSV

    表 3  分子各部分的基态电荷和第一激发态电荷(单位: e)

    Table 3.  Net charges (unit: e) for divided parts of the molecules in the ground states and in the first excited states.

    QA0/eQA1/eQA/eQB0/eQB1/eQB/e
    T0.02980.39780.3680– 0.0298– 0.3978– 0.3680
    T20.02920.39010.3609– 0.0292– 0.3901– 0.3609
    T40.02940.40660.3772– 0.0294– 0.4066– 0.3772
    R0.02710.31360.2865– 0.0271– 0.3136– 0.2865
    S0.02840.35260.3242– 0.0284– 0.3526– 0.3242
    U0.03050.43400.4305– 0.0305– 0.4340– 0.4305
    下载: 导出CSV

    表 4  分子六个最低激发态的TPA波长${\lambda _{{\rm{tp}}}}$(nm)和TPA截面$\sigma $(GM)

    Table 4.  The TPA wavelength ${\lambda _{{\rm{tp}}}}$(nm) and the TPA cross section $\sigma $(GM) of the lowest six excited states.

    XYZ
    ${\lambda _{{\rm{tp}}}}$/nm$\sigma $/GM${\lambda _{{\rm{tp}}}}$/nm$\sigma $/GM${\lambda _{{\rm{tp}}}}$/nm$\sigma $/GM
    S174794782415438022259
    S2663406347376021362
    S3615190657917635821
    S456015769154057
    S554265570606527738
    S6525502560505464
    下载: 导出CSV
  • [1]

    Kim S, Zheng Q, He G S, Bharali D J, Pudavar H E, Baev A, Prasad P N 2006 Adv. Funct. Mater. 16 2317

    [2]

    Kim S, Pudavar H E, Bonoiu A, Prasad P N 2007 Adv. Mater. 19 3791

    [3]

    Hu R, Maldonado J, Rodriguez M, Deng C, Jim C W, Lam J Y, Yuen M F, Ramos-Ortiz G, Tang B Z 2012 J. Mater. Chem. 22 232Google Scholar

    [4]

    Zhang Y, Li J, Tang B Z, Wong K S 2014 J. Phys. Chem. C 118 26981

    [5]

    Jiang Y, Wang Y, Hua J, Tang J, Li B, Qian S, Tian H 2010 Chem. Commun. 46 4689Google Scholar

    [6]

    Wang B, Wang Y, Hua J, Jiang Y, Huang J, Qian S, Tian H 2011 Chem. Eur. J. 17 2647Google Scholar

    [7]

    Xu B, Xie M, He J, Xu B, Chi Z, Tian W, Jiang L, Zhao F, Liu S, Zhang Y 2013 Chem. Commun. 49 273Google Scholar

    [8]

    Jiang T, Qu Y, Li B, Gao Y, Hua J 2015 RSC Adv. 5 1500

    [9]

    Qu C, Gao Z, Chen Y 2018 J. Lumin. 194 40Google Scholar

    [10]

    Gu B, Wu W, Xu G, Feng G, Yin F, Chong P H J, Qu J, Yong K T, Liu B 2017 Adv. Mater. 29 1701076Google Scholar

    [11]

    He G S, Tan L S, Zheng Q, Prasad P N 2008 Chem. Rev. 108 1245Google Scholar

    [12]

    Pawlicki M, Collins H A, Denning R G, Anderson H L 2009 Angew. Chem. Int. Ed. 48 3244Google Scholar

    [13]

    Hong Y, Lam J W Y, Tang B Z 2009 Chem. Commun. 29 4332

    [14]

    Hong Y, Lam J W Y, Tang B Z 2011 Chem. Soc. Rev. 40 5361Google Scholar

    [15]

    Wang F Q, Zhao K, Zhu M Y, Wang C K 2016 J. Phys. Chem. B 120 9708Google Scholar

    [16]

    Song J, Zhao K, Zhang H, Wang C K 2019 Mol. Phys. 117 672Google Scholar

    [17]

    Katan C, Terenziani F, Mongin O, Werts M H V, Porrès L,Pons T, Mertz J, Tretiak S, Blancharddesce M 2005 J. Phys. Chem. A 109 3024Google Scholar

    [18]

    Terenziani F, Morone M, Gmouh S, Blancharddesce M 2006 Chem. Phys. Chem. 7 685Google Scholar

    [19]

    Chattopadhyaya M, Alam M M, Chakrabarti S 2011 J. Phys. Chem. A 115 2607Google Scholar

    [20]

    Luo Y, Norman P, Macak P, Ågren H 2000 J. Phys. Chem. A 104 4718Google Scholar

    [21]

    Olsen J, Jørgensen P 1985 J. Chem. Phys. 82 3235Google Scholar

    [22]

    Monson P R, Mcclain W M 1970 J. Chem. Phys. 53 29Google Scholar

    [23]

    Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT, 2016 http://www.gaussian.com/ [2019-3-31]

    [24]

    Dalton, a Molecular Electronic Structure Program, Release DALTON2013.0, 2013 http://daltonprogram.org/ [2019-3-31]

    [25]

    Zhao K, Liu P W, Wang C K, Luo Y 2010 J. Phys. Chem. B 114 10814Google Scholar

    [26]

    武香莲, 赵珂, 贾海洪, 王富青 2015 物理学报 64 233301Google Scholar

    Wu X L, Zhao K, Jia H H, Wang F Q 2015 Acta Phys. Sin. 64 233301Google Scholar

    [27]

    Zhu M Y, Zhao K, Song J, Wang C K 2018 Chin. Phys. B 27 023302Google Scholar

    [28]

    Zhao K, Song J, Zhu M Y, Zhang H, Wang C K 2018 Chin. Phys. B 27 103301Google Scholar

    [29]

    Zhang Y J, Zhang Q Y, Ding H J, Song X N, Wang C K 2015 Chin. Phys. B 24 023301Google Scholar

    [30]

    Chung S J, Kim K S, Lin T C, He G S, Swiatkiewicz J, Prasad P N 1999 J. Phys. Chem. B. 103 10741Google Scholar

    [31]

    Adronov A, Fréchet J M J, He G S, Kim K S, Chung S J, Swiatkiewicz J, Prasad P N 2000 Chem. Mater. 12 2838Google Scholar

    [32]

    Chung S J, Lin T C, Kim K S, He G S, Swiatkiewicz J, Prasad P N, Baker G A, Bright F V 2001 Chem. Mater. 13 4071Google Scholar

  • [1] 方宇, 吴幸智, 陈永强, 杨俊义, 宋瑛林. Ge掺杂GaN晶体双光子诱导超快载流子动力学的飞秒瞬态吸收光谱研究. 物理学报, 2020, 69(16): 168701. doi: 10.7498/aps.69.20200397
    [2] 杨哲, 张祥, 肖思, 何军, 顾兵. 双光子激发ZnSe自由载流子超快动力学研究. 物理学报, 2015, 64(17): 177901. doi: 10.7498/aps.64.177901
    [3] 武香莲, 赵珂, 贾海洪, 王富青. 以二乙烯硫/砜基为中心的新型电荷转移分子双光子吸收特性. 物理学报, 2015, 64(23): 233301. doi: 10.7498/aps.64.233301
    [4] 贾克宁, 刘中波, 梁颖, 仝殿民, 樊锡君. Y型四能级系统中Doppler展宽对VIC相关的双光子吸收的影响. 物理学报, 2012, 61(6): 064204. doi: 10.7498/aps.61.064204
    [5] 赵珂, 刘朋伟, 韩广超. 分子动力学模拟方法在非线性光学中的应用. 物理学报, 2011, 60(12): 124216. doi: 10.7498/aps.60.124216
    [6] 郑加金, 陆云清, 李培丽. 激发态分子内质子转移有机分子HBT的三阶非线性光学特性. 物理学报, 2010, 59(7): 4687-4693. doi: 10.7498/aps.59.4687
    [7] 崔昊杨, 李志锋, 马法君, 陈效双, 陆卫. 硅的间接跃迁双光子吸收系数谱. 物理学报, 2010, 59(10): 7055-7059. doi: 10.7498/aps.59.7055
    [8] 苗泉, 赵鹏, 孙玉萍, 刘纪彩, 王传奎. 超短脉冲激光在DBASVP分子中传播时的双光子面积演化和光限幅效应. 物理学报, 2009, 58(8): 5455-5461. doi: 10.7498/aps.58.5455
    [9] 孙元红, 王传奎. 新型多共轭链有机分子双光子吸收特性的理论研究. 物理学报, 2009, 58(8): 5304-5310. doi: 10.7498/aps.58.5304
    [10] 孙玉萍, 刘纪彩, 王传奎. 含时电离对飞秒脉冲激光在强双光子吸收介质中传播特性和光限幅行为的影响. 物理学报, 2009, 58(6): 3934-3942. doi: 10.7498/aps.58.3934
    [11] 吴文智, 郑植仁, 金钦汉, 闫玉禧, 刘伟龙, 张建平, 杨延强, 苏文辉. 水溶性CdTe量子点的三阶光学非线性极化特性. 物理学报, 2008, 57(2): 1177-1182. doi: 10.7498/aps.57.1177
    [12] 崔昊杨, 李志锋, 李亚军, 刘昭麟, 陈效双, 陆 卫, 叶振华, 胡晓宁, 王 茺. 双光子吸收的Franz-Keldysh效应. 物理学报, 2008, 57(1): 238-242. doi: 10.7498/aps.57.238
    [13] 黄晓明, 陶丽敏, 郭雅慧, 高 云, 王传奎. 一种新型双共轭链分子非线性光学性质的理论研究. 物理学报, 2007, 56(5): 2570-2576. doi: 10.7498/aps.56.2570
    [14] 李成斌, 贾天卿, 孙海轶, 李晓溪, 徐世珍, 冯东海, 王晓峰, 葛晓春, 徐至展. 飞秒激光对氟化镁烧蚀机理研究. 物理学报, 2006, 55(1): 217-220. doi: 10.7498/aps.55.217
    [15] 赵 珂, 孙元红, 王传奎, 罗 毅, 张 献, 于晓强, 蒋民华. 1,4-二甲氧基-2,5-二乙烯基苯系列衍生物的双光子吸收截面. 物理学报, 2005, 54(6): 2662-2668. doi: 10.7498/aps.54.2662
    [16] 苏 燕, 王传奎, 王彦华, 陶丽敏. 二苯乙烯衍生物分子双光子吸收截面:官能团对称性的影响. 物理学报, 2004, 53(7): 2112-2117. doi: 10.7498/aps.53.2112
    [17] 江 俊, 李 宁, 陈贵宾, 陆 卫, 王明凯, 杨学平, 吴 刚, 范耀辉, 李永贵, 袁先漳. FEL诱导半导体材料非线性光吸收. 物理学报, 2003, 52(6): 1403-1407. doi: 10.7498/aps.52.1403
    [18] 何国华, 张俊祥, 叶莉华, 崔一平, 李振华, 来建成, 贺安之. 一种新型有机染料的宽带双光子吸收和光限幅特性的研究. 物理学报, 2003, 52(8): 1929-1933. doi: 10.7498/aps.52.1929
    [19] 张衍亮, 江 丽, 钮月萍, 孙真荣, 丁良恩, 王祖赓. Na2中由一对耦合能级相干叠加导致的双光子吸收的干涉增强效应. 物理学报, 2003, 52(2): 345-348. doi: 10.7498/aps.52.345
    [20] 贾天卿, 陈 鸿, 吴 翔. 导带电子的光吸收及其对材料破坏过程的影响. 物理学报, 2000, 49(7): 1277-1281. doi: 10.7498/aps.49.1277
计量
  • 文章访问数:  6815
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-01
  • 修回日期:  2019-07-03
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-20

/

返回文章
返回