搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半导体黄光发光二极管新材料新器件新设备

江风益 刘军林 张建立 徐龙权 丁杰 王光绪 全知觉 吴小明 赵鹏 刘苾雨 李丹 王小兰 郑畅达 潘拴 方芳 莫春兰

引用本文:
Citation:

半导体黄光发光二极管新材料新器件新设备

江风益, 刘军林, 张建立, 徐龙权, 丁杰, 王光绪, 全知觉, 吴小明, 赵鹏, 刘苾雨, 李丹, 王小兰, 郑畅达, 潘拴, 方芳, 莫春兰

Semiconductor yellow light-emitting diodes

Jiang Feng-Yi, Liu Jun-Lin, Zhang Jian-Li, Xu Long-Quan, Ding Jie, Wang Guang-Xu, Quan Zhi-Jue, Wu Xiao-Ming, Zhao Peng,  Liu Bi-Yu,  Li Dan, Wang Xiao-Lan, Zheng Chang-Da, Pan Shuan, Fang Fang, Mo Chun-Lan
PDF
HTML
导出引用
  • 在可见光范围内, 半导体发光二极管(LED)发展很不平衡, 黄光LED光效(光功率效率)长期远低于其他颜色光效. 本文基于GaN/Si体系, 从材料生长、芯片制造、器件物理和专用装备等方面进行了系统研究, 解决了外延膜龟裂、位错过多、量子阱应力过大、InGaN黄光阱材料相分离、空穴浓度不足、阱材料生长温度过低、衬底吸光、电极挡光等问题, 率先实现了高光效黄光LED关键性突破. 所研制的黄光LED器件, 在20 A/cm2驱动下波长565 nm黄光LED光效达26.7%, 对应164 lm/W; 在1 A/cm2驱动下波长577 nm黄光LED光效达42.8%, 对应248 lm/W. 基于高光效黄光LED, 开发了无荧光粉、多基色LED照明新光源, 实现了纯LED照明光源在路灯、氛围灯等方面应用.
    The development of semiconductor light-emitting diode (LED) in the visible emission range is very unbalance, as the power efficiency of yellow LED is far below other colors. Based on the GaN/Si technology, the authors and his team made a systematic research from the aspect of material growth, chip fabrication, device physics and equipment design, resolved the problems of epi-film cracking, high dislocation density, large strain in quantum well (QW), phase separation in QW, low QW growth temperature, low hole concentration, light absorption by substrate and light blocking by electrode, successfully made a breakthrough in fabricating efficient yellow LED. The yellow LED chip achieves a power efficiency of 26.7% at 20 A/cm2 with 565 nm wavelength and efficacy of 164 lm/W, and the power efficiency goes up to 42.8% at 1 A/cm2 with 577 nm wavelength and efficacy of 248 lm/W. New LED light source with multi-colors and without phosphor was developed based on the efficient yellow LEDs, opened up a new direction of pure LED healthy lighting.
      通信作者: 江风益, jiangfengyi@ncu.edu.cn
      Corresponding author: Jiang Feng-Yi, jiangfengyi@ncu.edu.cn
    [1]

    Thomas D G, Hopfield J J 1966 Phys. Rev. 150 680Google Scholar

    [2]

    Damilano B, Gil B 2015 J. Phys. D: Appl. Phys. 48 403001Google Scholar

    [3]

    Groves W O, Herzog A H, Craford M G 1971 Appl. Phys. Lett. 19 184Google Scholar

    [4]

    Kuo C P, Fletcher R M, Osentowski T D, Lardizabal M C, Craford M G, Robbins V M 1990 Appl. Phys. Lett. 57 2937Google Scholar

    [5]

    Kish F A, Steranka F M, DeFevere D C, van der Water D A, Park K G, Kuo C P, Osentowski T D, Peanasky M J, Yu J G, Fletcher R M, Steigerwald D A, Craford M G 1994 Appl. Phys. Lett. 64 2839Google Scholar

    [6]

    Satoa H, Chung R B, Hirasawa H, Fellows N, Masui H, Wu F, Saito M, Fujitob K, Speck J S, DenBaars S P, Nakamura S 2008 Appl. Phys. Lett. 92 221110Google Scholar

    [7]

    Saito S, Hashimoto R, Hwang J, Nunoue S 2013 Appl. Phys. Express 6 207

    [8]

    Gessmann Th 2004 J. Appl. Phys. 95 2203Google Scholar

    [9]

    El-Masry N A, Piner E L, Liu S X, et al. 1998 Appl. Phys. Lett 72 40Google Scholar

    [10]

    Braslau N, Cuomo J, Harris P, et al. 1973 US patent 3849707

    [11]

    Butter E, Fitzl G, Hirsch D, et al. 1979 Thin Solid Films 59 25Google Scholar

    [12]

    Takeuchi T, Amano H, Hiramatsu K, et al. 1991 J. Cryst. Growth 115 634Google Scholar

    [13]

    Watanabe A, Takeuchi T, Hirosawa K, et al. 1993 J. Cryst. Growth 128 391Google Scholar

    [14]

    Yang J, Sun C, Chen Q, et al. 1996 Appl. Phys. Lett. 69 3566Google Scholar

    [15]

    Kobayashi N, Kobayashi J, Dapkus P, et al. 1997 Appl. Phys. Lett. 71 3569Google Scholar

    [16]

    Wang L, Liu X, Zan Y, et al 1998 Appl. Phys. Lett. 72 109Google Scholar

    [17]

    Boo J, Rohr C, Ho W 1998 J. Cryst. Growth 189−190 439

    [18]

    Guha S, Bojarczuk N 1998 Appl. Phys. Lett. 72 415Google Scholar

    [19]

    江风益, 方文卿, 王立, 莫春兰, 刘和初, 周毛兴 2006 中国专利ZL200610072230.4

    Jiang F Y, Fang W Q, Wang L, Mo C L, Liu H C, Zhou M X 2006 Chinese Patent ZL200610072230.4 (in Chinese)

    [20]

    Mo C L, Fang W Q, PuY, Liu H C, Jiang F Y 2005 J. Cryst. Growth 285 312Google Scholar

    [21]

    Li T K, Mastro M, Dadgar A 2011 III-V Compound Semiconductors, Integration with Silicon-Based Microelectronics (CRC Press) p107

    [22]

    Zhang J L, Xiong C B, Liu J L, Quan Z J, Wang L, Jiang F Y 2014 Appl. Phys. A 114 1049Google Scholar

    [23]

    Liu J L, Zhang J L, Mao Q H, Wu X M, Jiang F Y 2013 CrystEngComm 15 3372Google Scholar

    [24]

    江风益, 刘军林, 王立, 等 2015 中国科学: 物理学 力学 天文学 45 067302

    Jiang F Y, Liu J L, Wang L, et al. 2015 Sci. China: Phys. Mech. Astron. 45 067302

    [25]

    Wu X H, Elsass C R, Abare A, et al 1998 Appl. Phys. Lett. 72 692Google Scholar

    [26]

    Hangleiter A, Hitzel F, Netzel C, Fuhrmann D, Rossow U, Ade G, Hinze P 2005 Phys. Rev. Lett. 95 127402Google Scholar

    [27]

    Wu X, Liu J, Quan Z, Xiong C, Zheng C, Zhang J, Mao Q, Jiang F 2014 Appl. Phys. Lett. 104 221101Google Scholar

    [28]

    Quan Z, Wang L, Zheng C, Liu J, Jiang F 2014 J. Appl. Phys. 116 183107Google Scholar

    [29]

    Wu X, Liu J, Jiang F 2015 J. Appl. Phys. 118 164504Google Scholar

    [30]

    Quan Z, Liu J, Fang F, Wang G, Jiang F 2015 J. Appl. Phys. 118 193102Google Scholar

    [31]

    Jiang F Y, Zhang J L, Xu L Q, et al. 2019 Photon. Res. 7 144Google Scholar

    [32]

    江风益, 蒲勇 2004 中国专利 ZL200410017471.X.

    Jiang F Y, Pu Y 2004 Chinese Patent ZL200410017471.X. (in Chinese)

    [33]

    Jiang F Y, Zhang J L, Sun Q, Quan Z J2019 in Li J M, Zhang G Q ed. GaN LEDs on Si Substrate, Light-Emitting Diodes, Materials, Processes, Devices and Applications (Springer)pp133−170.

    [34]

    Jiang F Y 2018 in Bi W G, Kuo H Z, Ku P C, Shen B ed., Advanced Optoelectronic Device Processing, Handbook of GaN Semiconductor Materials and Devices (CRC Press) pp285−304.

    [35]

    Lin J, Ding X, Hong C, et al. 2019 Scientific Reports 9 7560Google Scholar

  • 图 1  黄光LED光效发展历程

    Fig. 1.  The efficiency development progress of yellow LEDs

    图 2  GaN/Si基黄光LED (a)外延材料结构示意图; (b)外延生长在线干涉曲线

    Fig. 2.  (a) Schematic structure and (b) in-situ interference curve of GaN based yellow LED on Si substrate

    图 3  GaN/Si基LED外延材料网格化选区生长方法示意图

    Fig. 3.  Schematic of grid patterned Si substrate with GaN film grown on it

    图 4  不同准备层的黄光LED量子阱荧光显微镜形貌 (a)无准备层; (b)单一In组分超晶格准备层; (c)三段In组分逐步提升的超晶格准备层

    Fig. 4.  Fluorescent luminescence (FL) spectrometry of yellow LED quantum well: (a) Without prestrained layer; (b) with fixed indium content prestrained SLS layers; (c) with three steps of increased indium content prestrained SLS layers

    图 5  (a)含有V坑的黄光LED多量子阱结构透射电镜图; (b) V坑增强空穴注入示意图; (c)室温20 A/cm2下黄光LED外量子效率以及电压随V坑深度变化曲线

    Fig. 5.  (a) TEM image of yellow MQWs structure with V-pits; (b) schematic of hole injection enhancement by V-pits; (c) dependence of external quantum efficiency and voltage on V-pits size of yellow LED with 20 A/cm2 at room temperature

    图 6  发明的专用MOCVD设备反应管气体输运结构-同轴套管喷头示意图

    Fig. 6.  The showerhead structure of self-designed MOCVD for yellow LED

    图 7  自制MOCVD设备生长的黄光LED材料的SIMS曲线

    Fig. 7.  SIMS profile of yellow LED structure grown by self-designed MOCVD

    图 8  黄光LED芯片结构示意图

    Fig. 8.  Schematic chip structure of the yellow LED

    图 9  黄光LED样品B (a)室温不同电流下发光光谱; (b)变温变电流内量子效率曲线

    Fig. 9.  Electroluminescence of 565 nm yellow LED: (a) The room temperature emission spectrum at different current; (b) the internal quantum efficiency at various temperature and current density

    图 10  无荧光粉LED照明光源电致发光光谱图 (a)蓝、青、绿、黄、红五基色白光LED; (b)黄、红光组成的金黄光LED

    Fig. 10.  EL spectra of phosphor free LEDs: (a) Color mixing white LED with blue, cyan, green, yellow and red LEDs; (b) golden light LEDs with yellow and red LEDs

    图 11  金黄光LED照明应用 (a)户外路灯(南昌市艾溪湖公园); (b)室内氛围台灯

    Fig. 11.  Applications of golden light LEDs as (a) Outdoor street lights and (b) indoor atmosphere lamps

    表 1  黄光LED器件(芯片1 mm2)室温稳流状态电致发光结果

    Table 1.  Electroluminescence results of yellow LEDs (size 1 mm2) at room temperature and continues wave mode

    样品 电流密度/A·cm–2 电流/mA 电压/V 主波长/nm 半宽/nm 光功率/mW 外量子效率/% 光功率效率/% 流明效率/lm·W–1
    A 1 10 2.10 571 36.2 10.1 46.3 47.9 283
    20 200 2.43 560 36.8 143.3 32.3 29.5 182
    B 1 10 2.09 577 37.8 8.9 41.6 42.8 248
    20 200 2.41 565 38.6 128.7 29.4 26.7 164
    C 1 10 2.08 582 39.9 8.1 37.8 38.8 200
    20 200 2.40 570 40.3 113.3 26.0 23.6 139
    下载: 导出CSV
  • [1]

    Thomas D G, Hopfield J J 1966 Phys. Rev. 150 680Google Scholar

    [2]

    Damilano B, Gil B 2015 J. Phys. D: Appl. Phys. 48 403001Google Scholar

    [3]

    Groves W O, Herzog A H, Craford M G 1971 Appl. Phys. Lett. 19 184Google Scholar

    [4]

    Kuo C P, Fletcher R M, Osentowski T D, Lardizabal M C, Craford M G, Robbins V M 1990 Appl. Phys. Lett. 57 2937Google Scholar

    [5]

    Kish F A, Steranka F M, DeFevere D C, van der Water D A, Park K G, Kuo C P, Osentowski T D, Peanasky M J, Yu J G, Fletcher R M, Steigerwald D A, Craford M G 1994 Appl. Phys. Lett. 64 2839Google Scholar

    [6]

    Satoa H, Chung R B, Hirasawa H, Fellows N, Masui H, Wu F, Saito M, Fujitob K, Speck J S, DenBaars S P, Nakamura S 2008 Appl. Phys. Lett. 92 221110Google Scholar

    [7]

    Saito S, Hashimoto R, Hwang J, Nunoue S 2013 Appl. Phys. Express 6 207

    [8]

    Gessmann Th 2004 J. Appl. Phys. 95 2203Google Scholar

    [9]

    El-Masry N A, Piner E L, Liu S X, et al. 1998 Appl. Phys. Lett 72 40Google Scholar

    [10]

    Braslau N, Cuomo J, Harris P, et al. 1973 US patent 3849707

    [11]

    Butter E, Fitzl G, Hirsch D, et al. 1979 Thin Solid Films 59 25Google Scholar

    [12]

    Takeuchi T, Amano H, Hiramatsu K, et al. 1991 J. Cryst. Growth 115 634Google Scholar

    [13]

    Watanabe A, Takeuchi T, Hirosawa K, et al. 1993 J. Cryst. Growth 128 391Google Scholar

    [14]

    Yang J, Sun C, Chen Q, et al. 1996 Appl. Phys. Lett. 69 3566Google Scholar

    [15]

    Kobayashi N, Kobayashi J, Dapkus P, et al. 1997 Appl. Phys. Lett. 71 3569Google Scholar

    [16]

    Wang L, Liu X, Zan Y, et al 1998 Appl. Phys. Lett. 72 109Google Scholar

    [17]

    Boo J, Rohr C, Ho W 1998 J. Cryst. Growth 189−190 439

    [18]

    Guha S, Bojarczuk N 1998 Appl. Phys. Lett. 72 415Google Scholar

    [19]

    江风益, 方文卿, 王立, 莫春兰, 刘和初, 周毛兴 2006 中国专利ZL200610072230.4

    Jiang F Y, Fang W Q, Wang L, Mo C L, Liu H C, Zhou M X 2006 Chinese Patent ZL200610072230.4 (in Chinese)

    [20]

    Mo C L, Fang W Q, PuY, Liu H C, Jiang F Y 2005 J. Cryst. Growth 285 312Google Scholar

    [21]

    Li T K, Mastro M, Dadgar A 2011 III-V Compound Semiconductors, Integration with Silicon-Based Microelectronics (CRC Press) p107

    [22]

    Zhang J L, Xiong C B, Liu J L, Quan Z J, Wang L, Jiang F Y 2014 Appl. Phys. A 114 1049Google Scholar

    [23]

    Liu J L, Zhang J L, Mao Q H, Wu X M, Jiang F Y 2013 CrystEngComm 15 3372Google Scholar

    [24]

    江风益, 刘军林, 王立, 等 2015 中国科学: 物理学 力学 天文学 45 067302

    Jiang F Y, Liu J L, Wang L, et al. 2015 Sci. China: Phys. Mech. Astron. 45 067302

    [25]

    Wu X H, Elsass C R, Abare A, et al 1998 Appl. Phys. Lett. 72 692Google Scholar

    [26]

    Hangleiter A, Hitzel F, Netzel C, Fuhrmann D, Rossow U, Ade G, Hinze P 2005 Phys. Rev. Lett. 95 127402Google Scholar

    [27]

    Wu X, Liu J, Quan Z, Xiong C, Zheng C, Zhang J, Mao Q, Jiang F 2014 Appl. Phys. Lett. 104 221101Google Scholar

    [28]

    Quan Z, Wang L, Zheng C, Liu J, Jiang F 2014 J. Appl. Phys. 116 183107Google Scholar

    [29]

    Wu X, Liu J, Jiang F 2015 J. Appl. Phys. 118 164504Google Scholar

    [30]

    Quan Z, Liu J, Fang F, Wang G, Jiang F 2015 J. Appl. Phys. 118 193102Google Scholar

    [31]

    Jiang F Y, Zhang J L, Xu L Q, et al. 2019 Photon. Res. 7 144Google Scholar

    [32]

    江风益, 蒲勇 2004 中国专利 ZL200410017471.X.

    Jiang F Y, Pu Y 2004 Chinese Patent ZL200410017471.X. (in Chinese)

    [33]

    Jiang F Y, Zhang J L, Sun Q, Quan Z J2019 in Li J M, Zhang G Q ed. GaN LEDs on Si Substrate, Light-Emitting Diodes, Materials, Processes, Devices and Applications (Springer)pp133−170.

    [34]

    Jiang F Y 2018 in Bi W G, Kuo H Z, Ku P C, Shen B ed., Advanced Optoelectronic Device Processing, Handbook of GaN Semiconductor Materials and Devices (CRC Press) pp285−304.

    [35]

    Lin J, Ding X, Hong C, et al. 2019 Scientific Reports 9 7560Google Scholar

  • [1] 李建军, 崔屿峥, 付聪乐, 秦晓伟, 李雨畅, 邓军. 具有多MO喷嘴垂直MOCVD反应腔外延层厚度均匀性的优化理论及应用. 物理学报, 2024, 73(4): 046801. doi: 10.7498/aps.73.20231555
    [2] 刘辉城, 许佳雄, 林俊辉. Si衬底Cu2ZnSnS4太阳能电池的数值分析. 物理学报, 2021, 70(10): 108801. doi: 10.7498/aps.70.20201936
    [3] 潘洪英, 全知觉. p层空穴浓度及厚度对InGaN同质结太阳电池性能的影响机理研究. 物理学报, 2019, 68(19): 196103. doi: 10.7498/aps.68.20191042
    [4] 徐峰, 于国浩, 邓旭光, 李军帅, 张丽, 宋亮, 范亚明, 张宝顺. Pt/Au/n-InGaN肖特基接触的电流输运机理. 物理学报, 2018, 67(21): 217802. doi: 10.7498/aps.67.20181191
    [5] 张志荣, 房玉龙, 尹甲运, 郭艳敏, 王波, 王元刚, 李佳, 芦伟立, 高楠, 刘沛, 冯志红. 基于GaN同质衬底的高迁移率AlGaN/GaN HEMT材料. 物理学报, 2018, 67(7): 076801. doi: 10.7498/aps.67.20172581
    [6] 李忠辉, 罗伟科, 杨乾坤, 李亮, 周建军, 董逊, 彭大青, 张东国, 潘磊, 李传皓. 金属有机物化学气相沉积同质外延GaN薄膜表面形貌的改善. 物理学报, 2017, 66(10): 106101. doi: 10.7498/aps.66.106101
    [7] 陈峻, 范广涵, 张运炎. 选择性p型量子阱垒层掺杂在双波长发光二极管光谱调控中的作用. 物理学报, 2012, 61(8): 088502. doi: 10.7498/aps.61.088502
    [8] 周梅, 赵德刚. 结构参数对p-i-n结构InGaN太阳能电池性能的影响及机理. 物理学报, 2012, 61(16): 168402. doi: 10.7498/aps.61.168402
    [9] 胡懿彬, 郝智彪, 胡健楠, 钮浪, 汪莱, 罗毅. 分子束外延生长InGaN/AlN量子点的组分研究. 物理学报, 2012, 61(23): 237804. doi: 10.7498/aps.61.237804
    [10] 邢艳辉, 韩军, 邓军, 李建军, 徐晨, 沈光地. p型GaN低温粗化提高发光二极管特性. 物理学报, 2010, 59(2): 1233-1236. doi: 10.7498/aps.59.1233
    [11] 朱丽虹, 蔡加法, 李晓莹, 邓彪, 刘宝林. In组分渐变提高InGaN/GaN多量子阱发光二极管发光性能. 物理学报, 2010, 59(7): 4996-5001. doi: 10.7498/aps.59.4996
    [12] 万冀豫, 金克新, 谭兴毅, 陈长乐. Pr0.5Ca0.5MnO3/Si异质结输运特性和整流特性研究. 物理学报, 2010, 59(11): 8137-8141. doi: 10.7498/aps.59.8137
    [13] 刘启佳, 邵勇, 吴真龙, 徐洲, 徐峰, 刘斌, 谢自力, 陈鹏. 生长温度对AlGaInN四元合金薄膜性质的影响. 物理学报, 2009, 58(10): 7194-7198. doi: 10.7498/aps.58.7194
    [14] 崔秀芝, 张天冲, 梅增霞, 刘章龙, 刘尧平, 郭阳, 苏希玉, 薛其坤, 杜小龙. 湿法刻蚀对Si基片孔点阵及ZnO外延薄膜周期形貌的影响. 物理学报, 2009, 58(1): 309-314. doi: 10.7498/aps.58.309
    [15] 杨帆, 马瑾, 孔令沂, 栾彩娜, 朱振. 金属有机物化学气相沉积法生长Ga2(1-x)In2xO3薄膜的结构及光电性能研究. 物理学报, 2009, 58(10): 7079-7082. doi: 10.7498/aps.58.7079
    [16] 邢海英, 范广涵, 周天明. p,n型掺杂剂与Mn共掺杂GaN的电磁性质. 物理学报, 2009, 58(5): 3324-3330. doi: 10.7498/aps.58.3324
    [17] 唐欣欣, 罗文芸, 王朝壮, 贺新福, 查元梓, 樊 胜, 黄小龙, 王传珊. 低能质子在半导体材料Si 和GaAs中的非电离能损研究. 物理学报, 2008, 57(2): 1266-1270. doi: 10.7498/aps.57.1266
    [18] 陈小雪, 滕利华, 刘晓东, 黄绮雯, 文锦辉, 林位株, 赖天树. InGaN薄膜中电子自旋偏振弛豫的时间分辨吸收光谱研究. 物理学报, 2008, 57(6): 3853-3856. doi: 10.7498/aps.57.3853
    [19] 王 浩, 曾谷城, 廖常俊, 蔡继业, 郑树文, 范广涵, 陈 勇, 刘颂豪. GaxIn1-xP缓冲层组分对InP自组装形貌影响的研究. 物理学报, 2005, 54(4): 1726-1730. doi: 10.7498/aps.54.1726
    [20] 陈敦军, 沈 波, 张开骁, 邓咏桢, 范 杰, 张 荣, 施 毅, 郑有炓. GaN1-xPx薄膜的结构特性研究. 物理学报, 2003, 52(7): 1788-1791. doi: 10.7498/aps.52.1788
计量
  • 文章访问数:  11376
  • PDF下载量:  224
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-08
  • 修回日期:  2019-08-15
  • 上网日期:  2019-08-19
  • 刊出日期:  2019-08-20

/

返回文章
返回