搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含缺陷碳纳米管及碳纳米豆荚静动力特性模拟研究

王磊 张冉冉 方炜

引用本文:
Citation:

含缺陷碳纳米管及碳纳米豆荚静动力特性模拟研究

王磊, 张冉冉, 方炜

Simulation of static and dynamic mechanical characteristics of carbon nanotubes and carbon nano-peapods with defects

Wang Lei, Zhang Ran-Ran, Fang Wei
PDF
HTML
导出引用
  • 采用分子动力学方法, 对含双空位及多空位缺陷碳纳米管进行静动力特性模拟研究. 首先讨论了双原子空位缺陷以及多原子空位缺陷对碳纳米管的准静态力学性质的影响, 然后讨论了缺陷以及轴向预应力对碳纳米豆荚内C60分子振荡动力学的影响. 研究表明, 相对于无缺陷碳纳米管, 含不同类型双原子空位缺陷碳纳米管的极限应力、极限应变和弹性模量都大幅下降; 当碳纳米管缺陷原子较多, 缺陷连接在一起形成类似裂纹之后, 使得碳纳米管轴向抗压性能大幅降低, 裂纹沿周向发展相比于裂纹沿轴向发展, 其抗压能力下降得更多, 这类似于含裂纹的壳体模型结构抗压性能的下降; 缺陷碳纳米豆荚中C60分子的振荡频率受到缺失的碳原子数的影响, 单原子空位缺陷使得C60分子的振荡频率增大, 但随着空位数的增多, C60分子的振荡频率会逐渐减小; 当缺陷碳纳米豆荚存在轴向预应力时, C60分子的振荡不仅受到缺陷影响, 同时还受到轴向预应力的影响, 这使得C60分子振荡变得更为复杂.
    The static and dynamic mechanical characteristics of carbon nanotubes with double and multiple vacancy defects are simulated by the molecular dynamics method. Firstly, the effects of diatomic and polyatomic vacancy defects on the quasi-static mechanical properties of carbon nanotubes are discussed. Then, the effects of defects and axial pre-stress on the dynamics of C60 molecular oscillation in carbon nano-peapods are discussed. The results show that the ultimate stress, ultimate strain and elastic modulus of carbon nanotube containing different types of diatomic vacancies are significantly reduced as compared with those of non-defective carbon nanotubes. When the carbon nanotubes have many defective atoms and the defects are connected together to form a crack, the axial compressive properties of the carbon nanotubes are greatly reduced. Compared with the circumferential development of cracks, the cracks along the axis greatly reduce the compressive capacity of carbon nanotubes, which is similar to that of shell models with cracks. The oscillation frequency of C60 molecular in defective carbon nano-peapods is affected by the number of missing atoms. The single vacancy defect increases the oscillation frequency of C60 molecule, while with the further increase of vacancy number, the oscillation frequency of C60 molecule decreases gradually. When the defective carbon nano-peapod has axial tensile or compressive pre-stress, the oscillation of the C60 molecule is affected not only by the defects, but also by the axial pre-stress, which makes the oscillation of C60 molecule more complicated.
      通信作者: 王磊, wangL@hhu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11472098)和中央高校基本科研业务费专项资金(批准号: 2018B57814)资助的课题.
      Corresponding author: Wang Lei, wangL@hhu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11472098) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 2018B57814).
    [1]

    Iijima S 1991 Nature 354 56Google Scholar

    [2]

    Krishnan A, Dujardin E, Ebbesen T W 1998 Phys. Rev. B 58 14013Google Scholar

    [3]

    Berber S, Kwon Y K, Tomanek D 2000 Phys. Rev. Lett. 84 4613Google Scholar

    [4]

    Rinzler A G, Hafner J H, Nikolaev P, Lou L, Kim S G, Tomanek D, Nordlander P, Colbert D T, Smalley R E 1995 Science 269 1550Google Scholar

    [5]

    Popov V N 2004 Mater. Sci. Eng. R 43 61Google Scholar

    [6]

    Harris P J F, Hernandez E, Yakobson B I 2004 Am. J. Phys. 72 413Google Scholar

    [7]

    Stone A J, Wales D J 1986 Chem. Phys. Lett. 128 501Google Scholar

    [8]

    Nardelli M B, Yakobson B I, Bernholc J 1998 Phys. Rev. B 57 4277Google Scholar

    [9]

    Hirai Y, Nishimaki S, Mori H, Kimoto Y, Akita S, Nakayama Y, Tanaka Y 2003 Jpn. J. Appl. Phys. 42 4120Google Scholar

    [10]

    辛浩, 韩强, 姚小虎 2008 物理学报 57 4391Google Scholar

    Xin H, Han Q, Yao X H 2008 Acta Phys. Sin. 57 4391Google Scholar

    [11]

    袁剑辉, 程玉民, 张振华 2009 物理学报 58 2578Google Scholar

    Yuan J H, Cheng Y M, Zhang Z H 2009 Acta Phys. Sin. 58 2578Google Scholar

    [12]

    Zhang Y Y, Xiang Y, Wang C M 2009 J. Appl. Phys. 106 113503Google Scholar

    [13]

    Kulathunga D D T K, Ang K K, Reddy J N 2010 J. Phys.: Condens. Matter 22 345301Google Scholar

    [14]

    王锋, 曾祥华, 徐秀莲 2002 物理学报 51 1778Google Scholar

    Wang F, Zeng X H, Xu X L 2002 Acta Phys. Sin. 51 1778Google Scholar

    [15]

    Liu P, Zhang Y W, Lu C 2005 J. Appl. Phys. 97 094313Google Scholar

    [16]

    Song H Y, Zha X W 2009 Phys. Lett. A 373 1058Google Scholar

    [17]

    崔柳, 冯妍卉, 檀鹏, 张欣欣 2015 科学通报 60 1414

    Cui L, Feng Y H, Tan P, Zhang X X 2015 Chin. Sci. Bull. 60 1414

    [18]

    方炜, 王磊 2018 材料导报 32 164

    Fang W, Wang L 2018 Mater. Rev. 32 164

    [19]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [20]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S 2002 J. Phys.: Condens. Matter 14 783Google Scholar

    [21]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472Google Scholar

    [22]

    Lennard-Jones J E, Dent B M 1926 Proc. R. Soc. A 112 230Google Scholar

    [23]

    Girifalco L A, Hodak M, Lee R S 2000 Phys. Rev. B 62 13104Google Scholar

    [24]

    Rafizadeh H A 1974 Physica 74 135Google Scholar

    [25]

    Cox B J, Thamwattana N, Hill J M 2007 Proc. R. Soc. A 463 461Google Scholar

    [26]

    Cox B J, Thamwattana N, Hill J M 2007 Proc. R. Soc. A 463 477Google Scholar

  • 图 1  (a) (10 10)无缺陷扶手椅型碳纳米管; (b) 六元环中碳原子编号

    Fig. 1.  (a) (10 10) Non-defective armchair carbon nanotube; (b) numbering of carbon atoms in six-membered ring.

    图 2  表1中编号1−6所对应的含双原子空位缺陷碳纳米管的局部原子构型图

    Fig. 2.  Local atomic configuration of carbon nanotubes containing diatomic vacancy defects corresponding to numbers 1−6 in Table 1

    图 3  含多原子空位缺陷碳纳米管模型 (a) 沿轴向分布的多原子空位缺陷; (b) 沿周向分布的多原子空位缺陷

    Fig. 3.  Carbon nanotubes with polyatomic vacancy defects: (a) Polyatomic vacancy defects distributed along the axial direction; (b) polyatomic vacancy defects distributed along the circumferential direction.

    图 4  无缺陷碳纳米豆荚模型

    Fig. 4.  Non-defective carbon nano-peapod.

    图 5  含缺陷碳纳米豆荚模型

    Fig. 5.  Defective carbon nano-peapod.

    图 6  含多原子空位缺陷碳纳米管在轴向荷载作用下屈曲失稳构型 (a) 沿轴向分布的含多原子空位缺陷管; (b) 沿周向分布的含多原子空位缺陷管

    Fig. 6.  Buckling instability configuration of carbon nanotubes with polyatomic vacancy defects under axial loading: (a) Carbon nanotubes with polyatomic vacancy defects distributed along the axial direction; (b) carbon nanotubes with polyatomic vacancy defects distributed along the circumferential direction.

    图 7  含多原子空位缺陷碳纳米管的弹性模量随原子缺失数的变化

    Fig. 7.  Variation of elastic modulus of carbon nanotubes with the number of missing atoms when polyatomic vacancy defects occurs.

    图 8  C60在一个运动周期内的受力随运动距离的变化

    Fig. 8.  The variation of force on C60 molecule with the distance of its motion in a cycle.

    图 9  C60分子的振荡频率随碳管中原子缺失数的变化

    Fig. 9.  Variation of the oscillation frequency of C60 molecule with the number of missing atoms in carbon tubes.

    图 10  缺陷碳纳米豆荚内C60分子的振荡频率随轴向预应力的变化

    Fig. 10.  Variation of the oscillation frequency of C60 molecules in the defective carbon nano-peapods with axial pre-stress.

    表 1  含双原子空位缺陷碳纳米管

    Table 1.  Carbon nanotubes containing diatomic vacancy defects.

    编号缺陷类型间隔碳原子数
    1缺失1, 2位置原子0
    2缺失1, 3位置原子1
    3缺失1, 4位置原子2
    4缺失1, 5位置原子1
    5缺失1, 6 位置原子0
    6缺失3, 6位置原子2
    下载: 导出CSV

    表 2  轴压下双原子空位缺陷对碳纳米管力学性能影响

    Table 2.  Effect of diatomic vacancy defects on mechanical properties of carbon nanotubes under axial compression.

    编号极限应力/GPa极限应变/%弹性模量/GPa
    127.963.76743.6
    228.264.00706.5
    328.284.00707.0
    429.064.24685.4
    531.214.20743.1
    630.344.30705.6
    740.864.85842.5
    下载: 导出CSV
  • [1]

    Iijima S 1991 Nature 354 56Google Scholar

    [2]

    Krishnan A, Dujardin E, Ebbesen T W 1998 Phys. Rev. B 58 14013Google Scholar

    [3]

    Berber S, Kwon Y K, Tomanek D 2000 Phys. Rev. Lett. 84 4613Google Scholar

    [4]

    Rinzler A G, Hafner J H, Nikolaev P, Lou L, Kim S G, Tomanek D, Nordlander P, Colbert D T, Smalley R E 1995 Science 269 1550Google Scholar

    [5]

    Popov V N 2004 Mater. Sci. Eng. R 43 61Google Scholar

    [6]

    Harris P J F, Hernandez E, Yakobson B I 2004 Am. J. Phys. 72 413Google Scholar

    [7]

    Stone A J, Wales D J 1986 Chem. Phys. Lett. 128 501Google Scholar

    [8]

    Nardelli M B, Yakobson B I, Bernholc J 1998 Phys. Rev. B 57 4277Google Scholar

    [9]

    Hirai Y, Nishimaki S, Mori H, Kimoto Y, Akita S, Nakayama Y, Tanaka Y 2003 Jpn. J. Appl. Phys. 42 4120Google Scholar

    [10]

    辛浩, 韩强, 姚小虎 2008 物理学报 57 4391Google Scholar

    Xin H, Han Q, Yao X H 2008 Acta Phys. Sin. 57 4391Google Scholar

    [11]

    袁剑辉, 程玉民, 张振华 2009 物理学报 58 2578Google Scholar

    Yuan J H, Cheng Y M, Zhang Z H 2009 Acta Phys. Sin. 58 2578Google Scholar

    [12]

    Zhang Y Y, Xiang Y, Wang C M 2009 J. Appl. Phys. 106 113503Google Scholar

    [13]

    Kulathunga D D T K, Ang K K, Reddy J N 2010 J. Phys.: Condens. Matter 22 345301Google Scholar

    [14]

    王锋, 曾祥华, 徐秀莲 2002 物理学报 51 1778Google Scholar

    Wang F, Zeng X H, Xu X L 2002 Acta Phys. Sin. 51 1778Google Scholar

    [15]

    Liu P, Zhang Y W, Lu C 2005 J. Appl. Phys. 97 094313Google Scholar

    [16]

    Song H Y, Zha X W 2009 Phys. Lett. A 373 1058Google Scholar

    [17]

    崔柳, 冯妍卉, 檀鹏, 张欣欣 2015 科学通报 60 1414

    Cui L, Feng Y H, Tan P, Zhang X X 2015 Chin. Sci. Bull. 60 1414

    [18]

    方炜, 王磊 2018 材料导报 32 164

    Fang W, Wang L 2018 Mater. Rev. 32 164

    [19]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [20]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S 2002 J. Phys.: Condens. Matter 14 783Google Scholar

    [21]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472Google Scholar

    [22]

    Lennard-Jones J E, Dent B M 1926 Proc. R. Soc. A 112 230Google Scholar

    [23]

    Girifalco L A, Hodak M, Lee R S 2000 Phys. Rev. B 62 13104Google Scholar

    [24]

    Rafizadeh H A 1974 Physica 74 135Google Scholar

    [25]

    Cox B J, Thamwattana N, Hill J M 2007 Proc. R. Soc. A 463 461Google Scholar

    [26]

    Cox B J, Thamwattana N, Hill J M 2007 Proc. R. Soc. A 463 477Google Scholar

计量
  • 文章访问数:  7243
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-23
  • 修回日期:  2019-06-10
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-20

/

返回文章
返回