搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cr,Mg:GSGG 晶体生长、光谱性能及Cr4+形成机理的研究

姜大朋 苏良碧 徐军 唐慧丽 吴锋 郑丽和 王庆国 郭鑫 邹宇琦

引用本文:
Citation:

Cr,Mg:GSGG 晶体生长、光谱性能及Cr4+形成机理的研究

姜大朋, 苏良碧, 徐军, 唐慧丽, 吴锋, 郑丽和, 王庆国, 郭鑫, 邹宇琦

Study of growth, spectra properties and Cr4+ formation mechanism of Cr,Mg:GSGG crystal

Jiang Da-Peng, Su Liang-Bi, Xu Jun, Tang Hui-Li, Wu Feng, Zheng Li-He, Wang Qing-Guo, Guo Xin, Zou Yu-Qi
PDF
导出引用
  • 采用传统提拉法单晶生长技术成功生长出了Cr,Mg:GSGG晶体, 并对生长出的晶体样品进行了氧化气氛和还原气氛退火处理. 通过对比分析退火处理前后样品吸收光谱的变化, 推断出晶体中四面体配位Cr4+离子的形成机理为: 晶体生长和高温氧化气氛退火的过程中, 四价Cr4+离子首先在八面体格位上形成, 然后在热激发作用下与邻近四面体格位上的Ga3+离子发生置换反应, 从而形成一定浓度的四面体配位Cr4+离子. 实验结果还表明, 随着电荷补偿离子Mg2+离子浓度的增大, 更有利于提高四面体配位Cr4+离子的浓度.
    Cr,Mg:GSGG crystals are successfully grown by the Czochralski method. The influences of reducing- and oxidizing- annealing treatments on the absorption spectra of Cr,Mg:GSGG crystals are investigated. From the changes of their absorption spectra, it can be inferred that the Cr4+ ions are initially generated at octahedrally coordinated sites, and then exchange positions with tetrahedral Ga3+ ions in neighboring sites under heat exciting. Differences between absorption spectra also suggest that Mg2+ ions can improve the concentration of tetrahedral Cr4+ ions.
    • 基金项目: 国家自然科学基金(批准号: 60938001, 60908030) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60938001, 60908030).
    [1]

    Yankov P 1994 J. Phys. D 27 1118

    [2]

    Wu Z H, Song F, Liu S J, Cai H, Su J, Tian J G, Zhang G Y 2006 Acta Phys. Sin. 55 4659 (in Chinese)

    [3]

    Yumashev K V, Denisov I A, Posnov N N, Kuleshov N V, Moncorge R 2000 J. Alloys Compd. 341 366

    [4]

    Malyarevich A M, Denisov I A, Yumashev K V, Mikhailov V P, Conroy R S, Sinclair B D 1998 Appl. Phys. B 67 555

    [5]

    Burshtein Z, Shimony Y, Feldman R, Krupkin V, Glushko A, Galun E 2001 Opt. Mat. 15 285

    [6]

    Su L B, Zhang D, Li H J, Qian X B, Shen J, Zhou G Q, Xu J 2006 Acta Phys. Sin. 55 5987 (in Chinese)

    [7]

    Song Y J, Hu M L, Xie C, Chai L, Wang Q M 2010 Acta Phys. Sin. 59 7105 (in Chinese)

    [8]

    Xia P K, Yu H J, Yan P, Gong M L 2010 Chin. Phys. B 19 044205

    [9]

    Kalisky Y 2004 Prog. Quant. Electron. 28 249

    [10]

    Lipavsky B, Kalisky Y, Burshtein Z, Shimony Y, Rotman S 1999 Opt. Mater. 13 117

    [11]

    Xu Y N, Ching W Y, Brickeen B K 2000 Phys. Rev. B 61 1817

    [12]

    Danileéko Yu K, Zharikov E V, Laptev V V, Minaev Yu P, Nikolaev V N, Sidorin A V, Toropkin G N, Shcherbakov I A 1985 Sov. J. Quantum Electron. 15 286

    [13]

    Sun D L, Luo J Q, Xiao J Z, Zhang Q L, Jiang H H, Yin S T,Wang Y F, Ge X W 2008 Appl. Phys. B 92 529

    [14]

    Sun D L, Luo J Q, Zhang Q L, Xiao J Z, Xu J Y, Jiang H H, Yin S T 2008 J. Lumin. 128 1886

    [15]

    French S E, Browh D J W, Konwles D S, Piper J A 1998 Appl. Opt. 37 536

    [16]

    Struve B, Huber G 1985 Appl. Phys. B 36 195

    [17]

    Tsai C N, Huang K Y, Tsai H J, Chen J C, Lin Y S, Huang S L, Lin Y S 2008 J. Crystal Growth. 310 2774

    [18]

    Feldman R, Shimony Y, Burshtein Z 2003 Opt. Mater. 24 333

  • [1]

    Yankov P 1994 J. Phys. D 27 1118

    [2]

    Wu Z H, Song F, Liu S J, Cai H, Su J, Tian J G, Zhang G Y 2006 Acta Phys. Sin. 55 4659 (in Chinese)

    [3]

    Yumashev K V, Denisov I A, Posnov N N, Kuleshov N V, Moncorge R 2000 J. Alloys Compd. 341 366

    [4]

    Malyarevich A M, Denisov I A, Yumashev K V, Mikhailov V P, Conroy R S, Sinclair B D 1998 Appl. Phys. B 67 555

    [5]

    Burshtein Z, Shimony Y, Feldman R, Krupkin V, Glushko A, Galun E 2001 Opt. Mat. 15 285

    [6]

    Su L B, Zhang D, Li H J, Qian X B, Shen J, Zhou G Q, Xu J 2006 Acta Phys. Sin. 55 5987 (in Chinese)

    [7]

    Song Y J, Hu M L, Xie C, Chai L, Wang Q M 2010 Acta Phys. Sin. 59 7105 (in Chinese)

    [8]

    Xia P K, Yu H J, Yan P, Gong M L 2010 Chin. Phys. B 19 044205

    [9]

    Kalisky Y 2004 Prog. Quant. Electron. 28 249

    [10]

    Lipavsky B, Kalisky Y, Burshtein Z, Shimony Y, Rotman S 1999 Opt. Mater. 13 117

    [11]

    Xu Y N, Ching W Y, Brickeen B K 2000 Phys. Rev. B 61 1817

    [12]

    Danileéko Yu K, Zharikov E V, Laptev V V, Minaev Yu P, Nikolaev V N, Sidorin A V, Toropkin G N, Shcherbakov I A 1985 Sov. J. Quantum Electron. 15 286

    [13]

    Sun D L, Luo J Q, Xiao J Z, Zhang Q L, Jiang H H, Yin S T,Wang Y F, Ge X W 2008 Appl. Phys. B 92 529

    [14]

    Sun D L, Luo J Q, Zhang Q L, Xiao J Z, Xu J Y, Jiang H H, Yin S T 2008 J. Lumin. 128 1886

    [15]

    French S E, Browh D J W, Konwles D S, Piper J A 1998 Appl. Opt. 37 536

    [16]

    Struve B, Huber G 1985 Appl. Phys. B 36 195

    [17]

    Tsai C N, Huang K Y, Tsai H J, Chen J C, Lin Y S, Huang S L, Lin Y S 2008 J. Crystal Growth. 310 2774

    [18]

    Feldman R, Shimony Y, Burshtein Z 2003 Opt. Mater. 24 333

计量
  • 文章访问数:  5514
  • PDF下载量:  451
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-07
  • 修回日期:  2011-05-30
  • 刊出日期:  2012-03-15

/

返回文章
返回