搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非球形气溶胶粒子短波红外散射特性研究

范萌 陈良富 李莘莘 陶金花 苏林 邹铭敏 张莹 韩冬

引用本文:
Citation:

非球形气溶胶粒子短波红外散射特性研究

范萌, 陈良富, 李莘莘, 陶金花, 苏林, 邹铭敏, 张莹, 韩冬

Scattering properties of non-spherical particles in the CO2 shortwave infrared band

Fan Meng, Chen Liang-Fu, Li Shen-Shen, Tao Jin-Hua, Su Lin, Zou Ming-Min, Zhang Ying, Han Dong
PDF
导出引用
  • 利用T矩阵方法,以及基于扩散限制凝聚理论的广义多粒子米散射方法,研究了多种气溶胶粒子 在1.6和2.0 μm波段处,非球形单粒子和团簇粒子的光散射辐射特性,并分析了粒子有效半径、 复折射指数、粒子形状、相对湿度等因素对非球形粒子散射特性的影响. 分析表明,除了粒子有效半径和形状会在不同程度上引起粒子散射特性变化, 相对湿度对其影响也比较大,球形粒子与非球形粒子在不同相对湿度下后向散射相对差异均在18%以上; 当粒子体积较小时,水溶性气溶胶的后向散射强度随相对湿度的增加而增强,而当粒子体积较大时, 则随相对湿度的增加而减弱;在体积相同的条件下,体积较小的团簇粒子的不对称因子比非球形单粒子 平均偏大0.023,而体积较大的团簇粒子,却比非球形单粒子不对称因子平均偏小0.055; 单粒子或等体积的团簇粒子,其不同波段之间单次散射反照率差异较大,最大可达0.226. 该工作对研究气溶胶多次散射对CO2浓度卫星反演精度影响具有重要的科学意义.
    Based on the T-matrix method and the generalized multiparticle Mie-solution (GMM) method combined with diffusion-limited aggregation simulator, the scattering properties of non-spherical particles and aggregates are simulated at 1.6 μm and 2.0 μm. And the effects of the equal-volume sphere radius, the complex refractive index, the particle shape and the relative humidity (RH) on the scattering characteristics parameters of non-spherical aerosol are analyzed. The results show that besides the equal-volume sphere radius and the particle shape, the RH could also lead to a large change of the scattering properties. And the relative differences in back scattering between spherical particles and non-spherical particles in different relative humidities are all larger than 18%. If the RH increases, the back scattering will increase for small-size particles, while the back scattering of large-size ones will decrease. The asymmetry factors of the smaller aggregates are 0.023 averagely greater than those of the single equal-volume non-spherical particles, which the asymmetry factors of the bigger aggregates are 0.055 averagely less than those of the single equal-volume non-spherical particles. The differences in single scattering albedo between the two wavelengths 1.6 μm and 2.0 μm are all much larger for either aggregates or single equal-volume particles, and the biggest difference reaches 0.226. This research has scientific significance for studying the aerosol multiple scattering influencing on the accuracy of CO2 satellite retrieval.
    • 基金项目: 国家自然科学基金重点项目(批准号: 41130528)资助的课题.
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 41130528).
    [1]

    Crevoisier C, Chédin A, Matsueda H, Machida T, Armante1 R, Scott N A 2009 Atmos. Chem. Phys. 9 4797

    [2]

    Buchwitz M, Beek R, Burrows J P, Bovensmann H, Warneke T, Notholt J, Meirink J F, Goede A P H, Bergamaschi P, Körner S, Heimann M, Schulz A 2005 Atmos. Chem. Phys. 5 941

    [3]

    Aben I, Hasekamp O, Hartmann W 2007 J. Quant. Spectrosc. Radiat. Transfer. 104 450

    [4]

    Mayer B 2009 Eur. Phys. J. Conf. 1 75

    [5]

    Boesch H, Baker D, Connor B, Crisp D 2011 Remote Sens. 3 270

    [6]

    Natraj V, Boesch H, Spurr R J D, Yung Y L 2008 J. Geophys. Res. 113 D11212

    [7]

    Xie Q Y, Zhang Y M, Yuan H Y, Zhao J H, Qiao L F, Jiang Y L 2006 J. Univ. Sci. Technol. China 36 320 (in Chinese) [谢启源, 张永明, 袁宏永, 赵建华, 乔利锋, 蒋亚龙 2006 中国科学技术大学学报 36 320]

    [8]

    Tanré D, Deschamps P Y, Devaux C, Herman M 1998 J. Geophys. Res. 93 15955

    [9]

    Waterman P C 1999 J. Opt. Soc. Am. A 16 2968

    [10]

    Mishchenko M I, Travis L D, Mackowski D W 1996 J. Quant. Spectrosc. Radiat. Transfer 55 535

    [11]

    Draine B T, Flatau P J 1994 J. Opt. Soc. Am. A 11 1491

    [12]

    Yee K 1966 IEEE Trans. Antenn. Prop. 14 302

    [13]

    Xu Y, Gustafson B S 2001 J. Quant. Spectrosc. Radiat. Transfer. 70 395

    [14]

    Witten T, Sander L 1983 Phys. Rev. B 27 5686

    [15]

    Mishchenko M I, Travis L D 1998 J. Quant. Spectrosc. Radiat. Transfer. 60 309

    [16]

    Mishchenko M I, Travis L D, Mackowski D W 2010 J. Quant. Spectrosc. Radiat. Transfer. 111 1700

    [17]

    Mishchenko M I, Travis L D 1994 Opt. Commun. 109 16

    [18]

    Mishchenko M I 1991 J. Opt. Soc. Am. A 8 871

    [19]

    Mishchenko M I 1993 Appl. Opt. 32 4652

    [20]

    Hess M, Koepke P, Schult I 1998 Bull. Am. Met. Soc. 79 831

    [21]

    Rothman L S, Gordon I E, Barbe A, Benner D C, Bernath P F, Birk M, Boudon V, Brown L R, Campargue A, Champion J P, Chance K, Coudert L H, Dana V, Devi V M, Fally S, Flaud J M, Gamache R R, Goldman A, Jacquemart D, Kleiner I, Lacome N, Lafferty W J, Mandin J Y, Massie S T, Mikhailenko S.N, Miller C E, Moazzen-Ahmadi N, Naumenko O V, Nikitin A V, Orphal J, Perevalov V I, Perrin A, Predoi-Cross A, Rinsland C P, Rotger M, Šimečková M, Smith M A H, Sung K, Tashkun S A, Tennyson J, Toth R A, Vandaele A C, Vander Auwera J 2009 J. Quant. Spectrosc. Radiat. Transfer. 110 533

  • [1]

    Crevoisier C, Chédin A, Matsueda H, Machida T, Armante1 R, Scott N A 2009 Atmos. Chem. Phys. 9 4797

    [2]

    Buchwitz M, Beek R, Burrows J P, Bovensmann H, Warneke T, Notholt J, Meirink J F, Goede A P H, Bergamaschi P, Körner S, Heimann M, Schulz A 2005 Atmos. Chem. Phys. 5 941

    [3]

    Aben I, Hasekamp O, Hartmann W 2007 J. Quant. Spectrosc. Radiat. Transfer. 104 450

    [4]

    Mayer B 2009 Eur. Phys. J. Conf. 1 75

    [5]

    Boesch H, Baker D, Connor B, Crisp D 2011 Remote Sens. 3 270

    [6]

    Natraj V, Boesch H, Spurr R J D, Yung Y L 2008 J. Geophys. Res. 113 D11212

    [7]

    Xie Q Y, Zhang Y M, Yuan H Y, Zhao J H, Qiao L F, Jiang Y L 2006 J. Univ. Sci. Technol. China 36 320 (in Chinese) [谢启源, 张永明, 袁宏永, 赵建华, 乔利锋, 蒋亚龙 2006 中国科学技术大学学报 36 320]

    [8]

    Tanré D, Deschamps P Y, Devaux C, Herman M 1998 J. Geophys. Res. 93 15955

    [9]

    Waterman P C 1999 J. Opt. Soc. Am. A 16 2968

    [10]

    Mishchenko M I, Travis L D, Mackowski D W 1996 J. Quant. Spectrosc. Radiat. Transfer 55 535

    [11]

    Draine B T, Flatau P J 1994 J. Opt. Soc. Am. A 11 1491

    [12]

    Yee K 1966 IEEE Trans. Antenn. Prop. 14 302

    [13]

    Xu Y, Gustafson B S 2001 J. Quant. Spectrosc. Radiat. Transfer. 70 395

    [14]

    Witten T, Sander L 1983 Phys. Rev. B 27 5686

    [15]

    Mishchenko M I, Travis L D 1998 J. Quant. Spectrosc. Radiat. Transfer. 60 309

    [16]

    Mishchenko M I, Travis L D, Mackowski D W 2010 J. Quant. Spectrosc. Radiat. Transfer. 111 1700

    [17]

    Mishchenko M I, Travis L D 1994 Opt. Commun. 109 16

    [18]

    Mishchenko M I 1991 J. Opt. Soc. Am. A 8 871

    [19]

    Mishchenko M I 1993 Appl. Opt. 32 4652

    [20]

    Hess M, Koepke P, Schult I 1998 Bull. Am. Met. Soc. 79 831

    [21]

    Rothman L S, Gordon I E, Barbe A, Benner D C, Bernath P F, Birk M, Boudon V, Brown L R, Campargue A, Champion J P, Chance K, Coudert L H, Dana V, Devi V M, Fally S, Flaud J M, Gamache R R, Goldman A, Jacquemart D, Kleiner I, Lacome N, Lafferty W J, Mandin J Y, Massie S T, Mikhailenko S.N, Miller C E, Moazzen-Ahmadi N, Naumenko O V, Nikitin A V, Orphal J, Perevalov V I, Perrin A, Predoi-Cross A, Rinsland C P, Rotger M, Šimečková M, Smith M A H, Sung K, Tashkun S A, Tennyson J, Toth R A, Vandaele A C, Vander Auwera J 2009 J. Quant. Spectrosc. Radiat. Transfer. 110 533

  • [1] 宋跃辉, 周煜东, 王玉峰, 李仕春, 高飞, 李博, 华灯鑫. 水云增长过程中的云滴谱及散射特性分析. 物理学报, 2018, 67(24): 249201. doi: 10.7498/aps.67.20181544
    [2] 胡帅, 高太长, 李浩, 杨波, 江志东, 陈鸣, 李书磊. 基于时域多分辨算法的非球形气溶胶散射特性仿真模拟. 物理学报, 2017, 66(4): 044207. doi: 10.7498/aps.66.044207
    [3] 聂敏, 任家明, 杨光, 张美玲, 裴昌幸. 非球形气溶胶粒子及大气相对湿度对自由空间量子通信性能的影响. 物理学报, 2016, 65(19): 190301. doi: 10.7498/aps.65.190301
    [4] 王丹丹, 李志坚. 一维相位缺陷量子行走的共振传输. 物理学报, 2016, 65(6): 060301. doi: 10.7498/aps.65.060301
    [5] 张肃, 彭杰, 战俊彤, 付强, 段锦, 姜会林. 非球形椭球粒子参数变化对光偏振特性的影响. 物理学报, 2016, 65(6): 064205. doi: 10.7498/aps.65.064205
    [6] 张学海, 魏合理, 戴聪明, 曹亚楠, 李学彬. 取向比对椭球气溶胶粒子散射特性的影响. 物理学报, 2015, 64(22): 224205. doi: 10.7498/aps.64.224205
    [7] 崔帅, 张晓娟, 方广有. 基于递归T矩阵的离散随机散射体散射特性研究. 物理学报, 2014, 63(15): 154202. doi: 10.7498/aps.63.154202
    [8] 李雪萍, 纪奕才, 卢伟, 方广有. 车载探地雷达信号在分层介质中的散射特性. 物理学报, 2014, 63(4): 044201. doi: 10.7498/aps.63.044201
    [9] 孙悟, 邓小玖, 李耀东, 张永明, 郑赛晶, 王维妙. 双波长抗干扰光电感烟探测机理. 物理学报, 2013, 62(3): 030201. doi: 10.7498/aps.62.030201
    [10] 朱元庆, 曲兴华, 张福民, 陶会荣. 实际加工表面红外激光散射特性的实验研究. 物理学报, 2013, 62(24): 244201. doi: 10.7498/aps.62.244201
    [11] 米利, 周宏伟, 孙祉伟, 刘丽霞, 徐升华. 光散射聚集速率测定中T矩阵方法的应用. 物理学报, 2013, 62(13): 134704. doi: 10.7498/aps.62.134704
    [12] 赵继芝, 江月松, 欧军, 叶继海. 球形粒子在聚焦拉盖尔-高斯光束中的散射特性研究. 物理学报, 2012, 61(6): 064202. doi: 10.7498/aps.61.064202
    [13] 孙贤明, 王海华, 申晋, 王淑君. 随机取向双层椭球粒子偏振散射特性研究. 物理学报, 2011, 60(11): 114216. doi: 10.7498/aps.60.114216
    [14] 孙贤明, 申晋, 魏佩瑜. 含有密集随机分布内核的椭球粒子光散射特性研究. 物理学报, 2009, 58(9): 6222-6226. doi: 10.7498/aps.58.6222
    [15] 戴兵, 罗向东, 王亚伟. 椭圆截面非球形颗粒群的多重光散射. 物理学报, 2009, 58(6): 3864-3869. doi: 10.7498/aps.58.3864
    [16] 高飞, 山田亮子, 渡边光男, 刘华锋. 应用蒙特卡罗模拟进行正电子发射断层成像仪散射特性分析. 物理学报, 2009, 58(5): 3584-3591. doi: 10.7498/aps.58.3584
    [17] 胡明亮, 惠小强. 计算自旋-s算子幺正演化矩阵ds(t)的新方法及其应用. 物理学报, 2008, 57(6): 3319-3323. doi: 10.7498/aps.57.3319
    [18] 黄朝军, 刘亚锋, 吴振森. 烟尘簇团粒子光学截面和散射矩阵的数值计算. 物理学报, 2007, 56(7): 4068-4074. doi: 10.7498/aps.56.4068
    [19] 梁子长, 金亚秋. 一层非球形粒子散射的标量辐射传输迭代解的求逆. 物理学报, 2002, 51(10): 2239-2244. doi: 10.7498/aps.51.2239
    [20] 常梅, 金亚秋. 随机非球形粒子全极化散射的时间相关Mueller矩阵解. 物理学报, 2002, 51(1): 74-83. doi: 10.7498/aps.51.74
计量
  • 文章访问数:  6273
  • PDF下载量:  669
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-07
  • 修回日期:  2012-04-17
  • 刊出日期:  2012-10-05

/

返回文章
返回