搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺钬镱离子的氟氧化物玻璃陶瓷的一级和二级红外量子剪裁的研究

陈晓波 杨国建 李崧 Sawanobori N. 徐怡庄 陈晓端 周固

引用本文:
Citation:

掺钬镱离子的氟氧化物玻璃陶瓷的一级和二级红外量子剪裁的研究

陈晓波, 杨国建, 李崧, Sawanobori N., 徐怡庄, 陈晓端, 周固

First-order and second-order infrared quantum cutting of Ho3+ Yb3+ doped oxyfluoride vitroceramics

Chen Xiao-Bo, Yang Guo-Jian, Li Song, Sawanobori N., Xu Yi-Zhuang, Chen Xiao-Duan, Zhou Gu
PDF
导出引用
  • 本文报道了掺钬镱离子的氟氧化物玻璃陶瓷的一级和二级红外量子剪裁的比较研究.研究发现当5G5能级到5S2能级及之间的能级被激发的时候,大多数的粒子数容易无辐射弛豫到(5F45S2)能级.在(5F45S2)能级, 由很强的ETr7-ETaYb{5F4(Ho)5I6(Ho), 2F7/2(Yb)2F5/2(Yb)}交叉能量传递渠道, 导致Ho3+离子的粒子数被无损耗的交叉能量传递到5I6能级, 同时Yb3+离子从基态2F7/2能级被激发到2F5/2能级,它导致了两个能被晶体硅有效吸收的红外光子, 即一个(1153 nm, 1188 nm)的红外光子和另一个(973.0 nm, 1002.0 nm) 的红外光子,因此出现了显著的双光子一级红外量子剪裁. 最后,该文计算了Ho(0.5)Yb(1):FOV和Ho(0.5)Yb(10.5):FOV的交叉能量传递效率为tr, 1% Yb(5F45S2)=29.2%, tr,10.5% Yb(5F45S2)=99.2%和它们的共合作能量传递效率为tr, 1% Yb(5F3)=4.18%, tr, 10.5% Yb(5F3)=75.3%;而它们的双光子量子剪裁效率的理论上限值依次为CR, 1% Yb(5F45S2)=129.2%, CR, 10.5% Yb(5F45S2)=199.2% 和CO, 1% Yb(5F3)=104.18%, CO, 10.5% Yb(5F3)=175.3%.因此发现了一级红外量子剪裁有比二级红外量子剪裁高较多的概率.该项研究对太阳能电池效率的提高很有意义.
    Infrared quantum cutting is an international hot research field nowadays. Comparitive research between first-order and second-order quantum cutting of Ho3+ Yb3+ doped oxyfluoride vitroceramics is reported in present paper. It is found that most population can easily non-radiativly relax to (5F45S2) energy level when the energy levels between 5G5 and 5S2 are excited. For (5F45S2) level, the population of Ho3+ ion can be cross-transferred to 5I6 level by strong ETr7-ETaYb {5F4(Ho) 5I6 (Ho), 2F7/2(Yb) 2F5/2(Yb)} cross energy transfer passage; meanwhile, Yb3+ ion is excited to 2F5/2 level from 2F7/2 ground state. It results in the two infrared photons which can be absorbed by crystal Si, that is, one is (1153 nm, 1188 nm) infrared photon and the other is (973.0 nm, 1002.0 nm) infrared photon. Therefore, it results in two-photon first-order infrared quantum cutting. Finally, the cross energy transfer efficiency tr, 1%Yb(5F45S2)=29.2%, tr, 10.5%Yb(5F45S2)=99.2%. and cooperative energy transfer efficiency tr, 1%Yb(5F3)=4.18%, tr, 10.5%Yb(5F3)=75.3% of Ho(0.5)Yb(1):FOV and Ho(0.5)Yb(10.5):FOV are calculated. Their quantum efficiency up-limits of two-photon quantum cutting are CR, 1%Yb(5F45S2)=129.2%, CR, 10.5% Yb(5F45S2)=199.2 and CO, 1%Yb(5F3)=104.18%, CO, 10.5% Yb(5F3)=175.3% respectively. That is to say, the probability of first-order infrared quantum cutting is larger than that of second-order infrared quantum cutting. The present research is of significance for enhancing solar cell efficiency.
    • 基金项目: 国家自然科学基金(批准号: 10674019)和中央高校基本科研业务费专项资金 (批准号: 212-105560GK)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10674019 ), and by the Fundamental Research Funds for the Central Universities of China (212-105560GK).
    [1]

    Yang G Z 1995 Optical Physics (Beijing: Science Press) (in Chinese) [杨国桢, 1995 光物理科学 (北京: 科学出版社)]

    [2]

    Wegh R T, Donker H, Oskam K D, Meijerink A 1999 Science 283 663

    [3]

    Eliseeva S V, Bunzli J C G 2010 Chem. Soc. Rev. 39 189

    [4]

    Rodrguez V D, Tikhomirov V K, Mendez-Ramos J, Yanes A C, Moshchalkov V V 2010 Solar Energy Materials & Solar Cells 94 1612

    [5]

    Vergeer P, Vlugt T J H, Kox M H F, den Hertog M I, van der Eerden J P J M, Meijerink A 2005 Phys. Rev. B 71 014119

    [6]

    Lin H, Chen D Q, Yu Y L, Yang A P, and Wang Y S 2010 Opt. Lett. 36 876

    [7]

    Deng K M, Gong T, Hu L X, Wei X T, Chen Y H, Yin M 2011 Opt. Express 19 1749

    [8]

    Chen X B, Wu J G, Xu X L, Zhang Y Z, Sawanobori N, Zhang C L, Pan Q H, Salamo G J 2009 Opt. Lett. 34 887

    [9]

    Zhou J J, Teng Y, Liu X F, Ye S, Ma Z J, Qiu J R 2010 Phys. Chem. Chem. Phys. 12 13759

    [10]

    van der Ende B M, Aarts L, Meijerink A 2009 Phys. Chem. Chem. Phys. 11 11081

    [11]

    Chen J D, Guo H, Li Z Q, Zhang H, Zhuang Y X 2010 Opt. Materials 32 998

    [12]

    Zhou J J, Teng Y, Liu X F, Ye S, Xu X Q, Ma Z J, Qiu J R 2010 Opt. Express 18 21663

    [13]

    Richards B S 2006 Solar Energy Materials & Solar Cells 90 1189

    [14]

    Yu D C, Huang X Y, Ye S, Zhang Q Y 2011 J. Alloys and Compounds 509 9919

    [15]

    Reisfeld R 1977 Lasers and excited states of rare-earth (New York: Springer-Verlag, Berlin Heidelberg, )

    [16]

    Wei X T, Zhao J B, Chen Y H, Yin M, and Li Y 2010 Chin. Phys. B 19 077804

    [17]

    Chen X Y, Luo Z D 1998 Chin. Phys. 7 773

    [18]

    Song Z F, Lian S R, Wang S K 1982 Acta Phys. Sin. 31 772 (in Chinese) [宋增福, 连绍仁, 王淑坤 1982 物理学报 31 772]

    [19]

    Trupke T, Green M, Wurfel P 2002 J. Appl. Phys. 92 1668

    [20]

    Trupke T, Green M, Wurfel P 2002 J. Appl. Phys. 92 4117

    [21]

    Xu X R, Shu M Z 2003 Science of Luminescence and Luminescent Material (Beijing: The Publish Center of Material Science and Engineering)(in Chinese) [徐叙瑢, 苏勉曾 2003 发光学与发光材料 (北京: 材料科学与工程出版中心)]

    [22]

    Zhang X G, Yang B J 2002 Acta Phys. Sin. 51 2745 [张晓光, 杨伯君 2002 物理学报 51 2745]

    [23]

    Hao H Y, Kong G L, Zeng X B, Diao H W, Liao X B 2005 Acta Phys. Sin. 54 3327 [郝会颖, 孔光临, 曾湘波, 刁宏伟, 廖显伯 2005 物理学报 54 3327]

    [24]

    Zhao H, Wang Y S, Hou Y B, Xu Z, Xu X R 2000 Acta Phys. Sin. 49 954 [赵 辉, 王永生, 侯延冰, 徐 征, 徐叙瑢 2000 物理学报 49 954]

    [25]

    Zhao Z X 1979 Acta Phys. Sin. 28 222 [赵忠贤 1979 物理学报 28 222]

  • [1]

    Yang G Z 1995 Optical Physics (Beijing: Science Press) (in Chinese) [杨国桢, 1995 光物理科学 (北京: 科学出版社)]

    [2]

    Wegh R T, Donker H, Oskam K D, Meijerink A 1999 Science 283 663

    [3]

    Eliseeva S V, Bunzli J C G 2010 Chem. Soc. Rev. 39 189

    [4]

    Rodrguez V D, Tikhomirov V K, Mendez-Ramos J, Yanes A C, Moshchalkov V V 2010 Solar Energy Materials & Solar Cells 94 1612

    [5]

    Vergeer P, Vlugt T J H, Kox M H F, den Hertog M I, van der Eerden J P J M, Meijerink A 2005 Phys. Rev. B 71 014119

    [6]

    Lin H, Chen D Q, Yu Y L, Yang A P, and Wang Y S 2010 Opt. Lett. 36 876

    [7]

    Deng K M, Gong T, Hu L X, Wei X T, Chen Y H, Yin M 2011 Opt. Express 19 1749

    [8]

    Chen X B, Wu J G, Xu X L, Zhang Y Z, Sawanobori N, Zhang C L, Pan Q H, Salamo G J 2009 Opt. Lett. 34 887

    [9]

    Zhou J J, Teng Y, Liu X F, Ye S, Ma Z J, Qiu J R 2010 Phys. Chem. Chem. Phys. 12 13759

    [10]

    van der Ende B M, Aarts L, Meijerink A 2009 Phys. Chem. Chem. Phys. 11 11081

    [11]

    Chen J D, Guo H, Li Z Q, Zhang H, Zhuang Y X 2010 Opt. Materials 32 998

    [12]

    Zhou J J, Teng Y, Liu X F, Ye S, Xu X Q, Ma Z J, Qiu J R 2010 Opt. Express 18 21663

    [13]

    Richards B S 2006 Solar Energy Materials & Solar Cells 90 1189

    [14]

    Yu D C, Huang X Y, Ye S, Zhang Q Y 2011 J. Alloys and Compounds 509 9919

    [15]

    Reisfeld R 1977 Lasers and excited states of rare-earth (New York: Springer-Verlag, Berlin Heidelberg, )

    [16]

    Wei X T, Zhao J B, Chen Y H, Yin M, and Li Y 2010 Chin. Phys. B 19 077804

    [17]

    Chen X Y, Luo Z D 1998 Chin. Phys. 7 773

    [18]

    Song Z F, Lian S R, Wang S K 1982 Acta Phys. Sin. 31 772 (in Chinese) [宋增福, 连绍仁, 王淑坤 1982 物理学报 31 772]

    [19]

    Trupke T, Green M, Wurfel P 2002 J. Appl. Phys. 92 1668

    [20]

    Trupke T, Green M, Wurfel P 2002 J. Appl. Phys. 92 4117

    [21]

    Xu X R, Shu M Z 2003 Science of Luminescence and Luminescent Material (Beijing: The Publish Center of Material Science and Engineering)(in Chinese) [徐叙瑢, 苏勉曾 2003 发光学与发光材料 (北京: 材料科学与工程出版中心)]

    [22]

    Zhang X G, Yang B J 2002 Acta Phys. Sin. 51 2745 [张晓光, 杨伯君 2002 物理学报 51 2745]

    [23]

    Hao H Y, Kong G L, Zeng X B, Diao H W, Liao X B 2005 Acta Phys. Sin. 54 3327 [郝会颖, 孔光临, 曾湘波, 刁宏伟, 廖显伯 2005 物理学报 54 3327]

    [24]

    Zhao H, Wang Y S, Hou Y B, Xu Z, Xu X R 2000 Acta Phys. Sin. 49 954 [赵 辉, 王永生, 侯延冰, 徐 征, 徐叙瑢 2000 物理学报 49 954]

    [25]

    Zhao Z X 1979 Acta Phys. Sin. 28 222 [赵忠贤 1979 物理学报 28 222]

计量
  • 文章访问数:  4884
  • PDF下载量:  448
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-17
  • 修回日期:  2012-05-30
  • 刊出日期:  2012-11-05

/

返回文章
返回