搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磷脂在膜结构间的交换:温度和离子强度的影响

蒋中英 张国梁 马晶 朱涛

引用本文:
Citation:

磷脂在膜结构间的交换:温度和离子强度的影响

蒋中英, 张国梁, 马晶, 朱涛

Lipid exhange between membranes: effects of temperature and ionic strength

Jiang Zhong-Ying, Zhang Guo-Liang, Ma Jing, Zhu Tao
PDF
导出引用
  • 磷脂跨膜交换对生物膜功能与药学研究有重要意义. 石英电子微天平及耗散系数测量仪被用于研究囊泡与支撑膜间磷脂的交换行为. 研究表明: 首先, 在磷脂跨膜输运过程中, 热力学环境和离子强度对支撑膜表面吸附囊泡的形变程度影响较小, 囊泡与支撑膜的总接触面积直接取决于囊泡的吸附数量; 其次, 交换过程中膜结构间最大总接触面积随着温度的升高和离子强度的降低而增大, 温度和离子引起的囊泡吸附速率和跨膜交换速率的变化在其中发挥着关键调节作用. 本研究有助于加深对磷脂在生理条件下跨膜输运过程的理解, 并为基于脂质体的药物载运体系研究提供参考.
    Transmembrane lipid exchange is critical to membrane function and pharmaceutical application. The exchange process is not fully understood and it is explored by quartz crystal microbalance with dissipation monitor method in this paper. It is found that the vesicle deformation discrepancy is not significant for the supported-lipid-bilayer-attached vesicles under different thermal and ionic strength conditions. And hence the total intermembrane contact area is determined by the vesicle adsorption amount. The maximum total intermembrane contact area decreases with the increase of temperature and the decrease of ionic strength. The changes of the vesicle adsorption rate and the transmembrane lipid exchange rate induced by temperature and ionic strength are elucidated to understand the observation above. The study helps explain some physiological phenomena and provides some guidelines for drug delivery researches.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2012CB821500)和国家自然科学基金 (批准号: 10974080, 91027040, 11104192, 21264016, 11265015)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB821500) and the National Natural Science Foundation of China (Grant Nos. 10974080, 91027040, 11104192, 21264016, 11265015).
    [1]

    Holthuis J C M, Levine T P 2005 Nat. Rev. Mol. Cell Biol. 6 209

    [2]

    Liu J, Jiang X, Ashley C, Brinker C J 2009 JACS 131 7567

    [3]

    Zuhorn I S, Engberts J B F N, Hoekstra D 2007 Eur. Biophys. J. 36 349

    [4]

    Pantazatos D P, Pantazatos S P, MacDonald R C 2003 J. Membr. Biol. 194 129

    [5]

    Saeki D, Sugiura S, Baba T, Kanamori T, Sato S, Mukataka S, Ichikawa S 2008 J. Colloid Interface Sci. 320 611

    [6]

    Reinl H M, Bayerl T M 1994 Biochemistry 33 14091

    [7]

    Jones J D, Thompson T E 1989 Biochemistry 28 129

    [8]

    Stamatatos L, Leventis R, Zuckermann M J, Silvius J R 1988 Biochemistry 27 3917

    [9]

    Zhu T, Jiang Z, Ma Y 2012 Colloids Surf. B 97 155

    [10]

    MarchiArtzner V, Jullien L, Belloni L, Raison D, Lacombe L, Lehn J M 1996 J. Phys. Chem. 100 13844

    [11]

    Seantier B, Breffa C, Felix O, Decher G 2005 J. Phys. Chem. B 109 21755

    [12]

    Reimhult E, Hook F, Kasemo B 2003 Langmuir 19 1681

    [13]

    Zhu T, Xu F, Yuan B, Ren C, Jiang Z, Ma Y 2012 Colloids Surf. B 89 228

    [14]

    Sauerbrey G 1959 Z. Angew. Phys. 155 206

    [15]

    Richter R P, Brisson A R 2005 Biophys. J. 88 3422

    [16]

    Wikstrom A, Svedhem S, Sivignon M, Kasemo B 2008 J. Phys. Chem. B 112 14069

    [17]

    Keller C A, Glasmastar K, Zhdanov V P, Kasemo B 2000 Phys. Rev. Lett. 84 5443

    [18]

    Lei G H, MacDonald R C 2003 Biophys. J. 85 1585

    [19]

    Wu E S, Jacobson K, Papahadjopoulos D 1977 Biochemistry 16 3936

    [20]

    Sapuri A R, Baksh M M, Groves J T 2003 Langmuir 19 1606

    [21]

    Ding H M, Tian W D, Ma Y Q 2012 ACS Nano 6 1230

    [22]

    Li J B, Zhang Y, Yan L L 2001 Angew. Chem. Int. Edit. 40 891

    [23]

    An Z H, Tao C, Lu G, Mohwald H, Zheng S P, Cui Y, Li J B 2005 Chem. Mater. 17 2514

  • [1]

    Holthuis J C M, Levine T P 2005 Nat. Rev. Mol. Cell Biol. 6 209

    [2]

    Liu J, Jiang X, Ashley C, Brinker C J 2009 JACS 131 7567

    [3]

    Zuhorn I S, Engberts J B F N, Hoekstra D 2007 Eur. Biophys. J. 36 349

    [4]

    Pantazatos D P, Pantazatos S P, MacDonald R C 2003 J. Membr. Biol. 194 129

    [5]

    Saeki D, Sugiura S, Baba T, Kanamori T, Sato S, Mukataka S, Ichikawa S 2008 J. Colloid Interface Sci. 320 611

    [6]

    Reinl H M, Bayerl T M 1994 Biochemistry 33 14091

    [7]

    Jones J D, Thompson T E 1989 Biochemistry 28 129

    [8]

    Stamatatos L, Leventis R, Zuckermann M J, Silvius J R 1988 Biochemistry 27 3917

    [9]

    Zhu T, Jiang Z, Ma Y 2012 Colloids Surf. B 97 155

    [10]

    MarchiArtzner V, Jullien L, Belloni L, Raison D, Lacombe L, Lehn J M 1996 J. Phys. Chem. 100 13844

    [11]

    Seantier B, Breffa C, Felix O, Decher G 2005 J. Phys. Chem. B 109 21755

    [12]

    Reimhult E, Hook F, Kasemo B 2003 Langmuir 19 1681

    [13]

    Zhu T, Xu F, Yuan B, Ren C, Jiang Z, Ma Y 2012 Colloids Surf. B 89 228

    [14]

    Sauerbrey G 1959 Z. Angew. Phys. 155 206

    [15]

    Richter R P, Brisson A R 2005 Biophys. J. 88 3422

    [16]

    Wikstrom A, Svedhem S, Sivignon M, Kasemo B 2008 J. Phys. Chem. B 112 14069

    [17]

    Keller C A, Glasmastar K, Zhdanov V P, Kasemo B 2000 Phys. Rev. Lett. 84 5443

    [18]

    Lei G H, MacDonald R C 2003 Biophys. J. 85 1585

    [19]

    Wu E S, Jacobson K, Papahadjopoulos D 1977 Biochemistry 16 3936

    [20]

    Sapuri A R, Baksh M M, Groves J T 2003 Langmuir 19 1606

    [21]

    Ding H M, Tian W D, Ma Y Q 2012 ACS Nano 6 1230

    [22]

    Li J B, Zhang Y, Yan L L 2001 Angew. Chem. Int. Edit. 40 891

    [23]

    An Z H, Tao C, Lu G, Mohwald H, Zheng S P, Cui Y, Li J B 2005 Chem. Mater. 17 2514

计量
  • 文章访问数:  5403
  • PDF下载量:  532
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-29
  • 修回日期:  2012-08-06
  • 刊出日期:  2013-01-05

/

返回文章
返回