搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cun-1Au (n=2–10)团簇结构、静态极化率及吸收光谱的第一性原理研究

钱帅 郭新立 王家佳 余新泉 吴三械 于金

引用本文:
Citation:

Cun-1Au (n=2–10)团簇结构、静态极化率及吸收光谱的第一性原理研究

钱帅, 郭新立, 王家佳, 余新泉, 吴三械, 于金

First principles study of structures, static polarizabilities and optical absorption spectra of Cun-1Au (n=2–10) clusters

Qian Shuai, Guo Xin-Li, Wang Jia-Jia, Yu Xin-Quan, Wu San-Xie, Yu Jin
PDF
导出引用
  • 采用遗传算法, 得到贵金属混合团簇Cun-1Au (n=2–10)的稳态结构, 并采用分别基于静态及含时的密度泛函理论的第一性原理方法计算了团簇的静态极化率和吸收光谱. 由于d电子屏蔽效应的增强, 金原子的引入会导致团簇静态极化率的降低, 但立体的构型能减小这种影响. 基于含时密度泛函理论的第一性原理计算得到的吸收光谱指出, 这种屏蔽效应同时导致共振强度的明显下降. d轨道对跃迁贡献的进一步计算, 指出d轨道成分是团簇的光激发中的主要贡献者, 但d电子的屏蔽作用并不会直接导致在激发中d轨道贡献的提升. 针对固定尺寸体系, Cu6-nAun (n=0–6) 团簇的研究进一步论证了此观点. 计算的光谱与实验值能很好地对应, 并且比其他更早的理论计算更为接近实验值.
    The structures of Cun-1Au clusters are examined using the genetic algorithm, and the static polarizabilities and optical absorption spectra are investigated by first principles computations within the static and time-dependent versions of the density functional theory. The static polarizabilities decrease after being doped by one Au atom due to the strengthened screening effect of d electrons, which can also be weakened by three-dimensional structures. The optical spectra computed within the time-dependent density functional theory indicate that the screening effect also leads to the quenching of oscillator strengths. A deeper analysis of d-orbit indicates d-orbit is the main contributor in the optical excitation while its growing up is not directly influenced by the strengthened screening effect. The research on Cu6-nAun (n=0–6) clusters in a fixed size system verifies our arguments further. Our calculation results are in good agreement with the experimental data on the optical absorption spectra, which are closer to the experimental data than the earlier theoretical results.
    • 基金项目: 国家自然科学基金(批准号: 21173041) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21173041).
    [1]

    Cho E C, Pedro H C, Xia Y N 2009 Adv. Mater. 21 1

    [2]

    Ming T, Feng W, Tang Q 2009 Am. Chem. Soc. 131 16350

    [3]

    Kumar P S, Santos I P, Gonzalezi B R 2008 Nanotechnology 19 015606

    [4]

    Li X Y, Zhang Y, Jiao L S 2006 Acta Phys. Sin 55 2078 (in Chinese) [李向阳, 张芸, 焦力实 2006 物理学报 55 2078]

    [5]

    Ren X F, Zhan C L, Huang Y F 2008 Chin. Phys. Lett. 25 559

    [6]

    Yang H, Yang L D, Ma Y 2005 Chin. Phys. 14 1665

    [7]

    Gao H J, Liu F, Chen S T 2005 Chin. Phys. 14 2269

    [8]

    Xu Z C, Gao H J, Xiao C W 2008 Chin. Phys. B 17 2066

    [9]

    Idrobo J C, Walkosz W, Yip S F, Oeguet S, Wang J L, Jellinek J 2007 Phys. Rev. B 76 20542220

    [10]

    Baishya K, Idrobo J C, Ogut S 2011 Phys. Rev. B 83 24540224

    [11]

    Lecoultre S 2011 J. Chem. Phys. 134 74302

    [12]

    Lecoultre S, Rydlo A, Felix C 2011 J. Chem. Phys. 134 0743037

    [13]

    Wang H Q, Kuang X Y, Li H F 2010 Phys. Chem. Chem. Phys. 12 5156

    [14]

    Wang J, Wang G, Zhao J 2002 Phys. Rev. B 66 35418

    [15]

    Beeke A D 1993 J. Chem. Phys. 98 5648

    [16]

    Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785

    [17]

    Mielich B, Savin A, Stoll H, Preuss H 1989 Chem. Phys. Lett. 157 200

    [18]

    Wang H Y, Li X B, Tang Y J, King R B, Schaefer H F 2007 Chin. Phys. 16 1660

    [19]

    Zhao Y, Li Z, Yang J 2009 Phys. Chem. Chem. Phys. 11 2329

    [20]

    Tanaka H, Neukermans S, Janssens E, Silverans R E, Lievens P 2003 J. Chem. Phys. 119 7115

    [21]

    Hay P J, Wadt W R 1985 J. Chem. Phys. 82 270

    [22]

    Bishea G A, Pinegar J C, Morse M D 1991 J. Chem. Phys. 95 5630

    [23]

    Oganov A R 2010 Modern Methods of Crystal Structure Prediction (Wiley-VCH)

    [24]

    Nagle J K 1990 J. Am. Chem. Soc. 112 4741

    [25]

    Calaminici, Patrizia 2000 J. Chem. Phys. 113 2199

    [26]

    Ogut S, Idrobo J C, Jellinek J 2006 Journal of Cluster Science 17 609

    [27]

    Vitto Del A, Sousa C, Illas F, Pacchioni G 2004 J. Chem. Phys. 121 7457

    [28]

    Bosko S I, Moskaleva L V, Matveev A V, Rosch N 2007 J. Chem. Phys. 111 6870

    [29]

    Wang X, Wan X, Zhou H 2002 J. Mol. Struct.: Theochem 579 221

    [30]

    Shenstone A G 1948 Philos. Trans. R. Soc. London A 241 297

    [31]

    Lecoultre S, Rydlo A, Felix C 2011 Journal of Chemical Physics 134 0743037

    [32]

    Bishea G A 1991 J. Chem. Phys. 95 5630

    [33]

    Bishea G A 1991 J. Chem. Phys. 95 8765

    [34]

    Vasiliev I, Ogut S, Chelikowsky J R 1997 Phys. Rev. Lett. 78 4805

    [35]

    Jackson K A, Yang M, Chaudhuri I 2005 Phys. Rev. A 71 033205

  • [1]

    Cho E C, Pedro H C, Xia Y N 2009 Adv. Mater. 21 1

    [2]

    Ming T, Feng W, Tang Q 2009 Am. Chem. Soc. 131 16350

    [3]

    Kumar P S, Santos I P, Gonzalezi B R 2008 Nanotechnology 19 015606

    [4]

    Li X Y, Zhang Y, Jiao L S 2006 Acta Phys. Sin 55 2078 (in Chinese) [李向阳, 张芸, 焦力实 2006 物理学报 55 2078]

    [5]

    Ren X F, Zhan C L, Huang Y F 2008 Chin. Phys. Lett. 25 559

    [6]

    Yang H, Yang L D, Ma Y 2005 Chin. Phys. 14 1665

    [7]

    Gao H J, Liu F, Chen S T 2005 Chin. Phys. 14 2269

    [8]

    Xu Z C, Gao H J, Xiao C W 2008 Chin. Phys. B 17 2066

    [9]

    Idrobo J C, Walkosz W, Yip S F, Oeguet S, Wang J L, Jellinek J 2007 Phys. Rev. B 76 20542220

    [10]

    Baishya K, Idrobo J C, Ogut S 2011 Phys. Rev. B 83 24540224

    [11]

    Lecoultre S 2011 J. Chem. Phys. 134 74302

    [12]

    Lecoultre S, Rydlo A, Felix C 2011 J. Chem. Phys. 134 0743037

    [13]

    Wang H Q, Kuang X Y, Li H F 2010 Phys. Chem. Chem. Phys. 12 5156

    [14]

    Wang J, Wang G, Zhao J 2002 Phys. Rev. B 66 35418

    [15]

    Beeke A D 1993 J. Chem. Phys. 98 5648

    [16]

    Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785

    [17]

    Mielich B, Savin A, Stoll H, Preuss H 1989 Chem. Phys. Lett. 157 200

    [18]

    Wang H Y, Li X B, Tang Y J, King R B, Schaefer H F 2007 Chin. Phys. 16 1660

    [19]

    Zhao Y, Li Z, Yang J 2009 Phys. Chem. Chem. Phys. 11 2329

    [20]

    Tanaka H, Neukermans S, Janssens E, Silverans R E, Lievens P 2003 J. Chem. Phys. 119 7115

    [21]

    Hay P J, Wadt W R 1985 J. Chem. Phys. 82 270

    [22]

    Bishea G A, Pinegar J C, Morse M D 1991 J. Chem. Phys. 95 5630

    [23]

    Oganov A R 2010 Modern Methods of Crystal Structure Prediction (Wiley-VCH)

    [24]

    Nagle J K 1990 J. Am. Chem. Soc. 112 4741

    [25]

    Calaminici, Patrizia 2000 J. Chem. Phys. 113 2199

    [26]

    Ogut S, Idrobo J C, Jellinek J 2006 Journal of Cluster Science 17 609

    [27]

    Vitto Del A, Sousa C, Illas F, Pacchioni G 2004 J. Chem. Phys. 121 7457

    [28]

    Bosko S I, Moskaleva L V, Matveev A V, Rosch N 2007 J. Chem. Phys. 111 6870

    [29]

    Wang X, Wan X, Zhou H 2002 J. Mol. Struct.: Theochem 579 221

    [30]

    Shenstone A G 1948 Philos. Trans. R. Soc. London A 241 297

    [31]

    Lecoultre S, Rydlo A, Felix C 2011 Journal of Chemical Physics 134 0743037

    [32]

    Bishea G A 1991 J. Chem. Phys. 95 5630

    [33]

    Bishea G A 1991 J. Chem. Phys. 95 8765

    [34]

    Vasiliev I, Ogut S, Chelikowsky J R 1997 Phys. Rev. Lett. 78 4805

    [35]

    Jackson K A, Yang M, Chaudhuri I 2005 Phys. Rev. A 71 033205

  • [1] 聂伟, 阚瑞峰, 许振宇, 姚路, 夏晖晖, 彭于权, 张步强, 何亚柏. 基于TDLAS技术的水汽低温吸收光谱参数测量. 物理学报, 2017, 66(20): 204204. doi: 10.7498/aps.66.204204
    [2] 赵佰强, 张耘, 邱晓燕, 王学维. Fe:Mg:LiNbO3晶体电子结构和吸收光谱的第一性原理研究. 物理学报, 2015, 64(12): 124210. doi: 10.7498/aps.64.124210
    [3] 高进云, 张庆礼, 王小飞, 刘文鹏, 孙贵华, 孙敦陆, 殷绍唐. Nd3+掺杂GdTaO4的吸收光谱分析和晶场计算. 物理学报, 2015, 64(12): 124209. doi: 10.7498/aps.64.124209
    [4] 侯清玉, 郭少强, 赵春旺. 氧空位浓度对ZnO电子结构和吸收光谱影响的研究. 物理学报, 2014, 63(14): 147101. doi: 10.7498/aps.63.147101
    [5] 高进云, 孙敦陆, 罗建乔, 李秀丽, 刘文鹏, 张庆礼, 殷绍唐. 高浓度Er3+掺杂Y3Sc2Ga3O12晶体的吸收光谱与晶体场模型研究. 物理学报, 2014, 63(14): 144205. doi: 10.7498/aps.63.144205
    [6] 侯清玉, 董红英, 迎春, 马文. Mn高掺杂浓度对ZnO禁带宽度和吸收光谱影响的第一性原理研究. 物理学报, 2013, 62(3): 037101. doi: 10.7498/aps.62.037101
    [7] 侯清玉, 董红英, 迎春, 马文. Al高掺杂浓度对ZnO禁带和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(16): 167102. doi: 10.7498/aps.61.167102
    [8] 吕晓静, 翁春生, 李宁. 高压环境下1.58 μm波段CO2吸收光谱特性分析. 物理学报, 2012, 61(23): 234205. doi: 10.7498/aps.61.234205
    [9] 宁凯杰, 张庆礼, 周鹏宇, 杨华军, 许兰, 孙敦陆, 殷绍唐. Yb3+:Gd2SiO5晶体的结构和光谱性能. 物理学报, 2012, 61(12): 128102. doi: 10.7498/aps.61.128102
    [10] 邓伦华, 李传亮, 朱圆月, 何文艳, 陈扬骎. NO分子b4Σ--a4Πi(4,0)带的吸收光谱. 物理学报, 2012, 61(19): 194208. doi: 10.7498/aps.61.194208
    [11] 李宁, 翁春生. 非标定波长调制吸收光谱气体测量研究. 物理学报, 2011, 60(7): 070701. doi: 10.7498/aps.60.070701
    [12] 徐凌, 唐超群, 钱俊. C掺杂锐钛矿相TiO2吸收光谱的第一性原理研究. 物理学报, 2010, 59(4): 2721-2727. doi: 10.7498/aps.59.2721
    [13] 黄 丹, 邵元智, 陈弟虎, 郭 进, 黎光旭. 纤锌矿结构Zn1-xMgxO电子结构及吸收光谱的第一性原理研究. 物理学报, 2008, 57(2): 1078-1083. doi: 10.7498/aps.57.1078
    [14] 丁 君, 杨秋红, 唐在峰, 徐 军, 苏良碧. Er3+/Yb3+共掺的氧化镧钇透明陶瓷的光谱性能研究. 物理学报, 2007, 56(4): 2207-2211. doi: 10.7498/aps.56.2207
    [15] 王 策, 陈晓波, 张春林, 张蕴芝, 陈 鸾, 马 辉, 李 崧, 高爱华. Er3+:GdVO4中Er3+离子的光谱参数计算和晶场中能级分裂的讨论. 物理学报, 2007, 56(10): 6090-6097. doi: 10.7498/aps.56.6090
    [16] 王晓丹, 赵志伟, 徐晓东, 宋平新, 姜本学, 徐 军, 邓佩珍. 不同Yb掺杂量的Yb:Y3Al5O12晶体的光谱分析. 物理学报, 2006, 55(8): 4358-4364. doi: 10.7498/aps.55.4358
    [17] 孙世菊, 滕 枫, 徐 征, 张延芬, 侯延冰. 聚乙烯基咔唑与Alq3混合薄膜的发光性能与能量传递过程. 物理学报, 2004, 53(11): 3934-3939. doi: 10.7498/aps.53.3934
    [18] 谭 浩, 宋 峰, 苏 静, 商美茹, 付 博, 张光寅, 程振祥, 陈焕矗. Er3+,Tm3+共掺的NaY(WO4)2晶体的光谱分析和上转换发光. 物理学报, 2004, 53(2): 631-635. doi: 10.7498/aps.53.631
    [19] 宋 峰, 苏 静, 谭 浩, 商美茹, 吴朝晖, 田建国, 张光寅, 程振祥, 陈焕矗. 钨酸钇钠晶体中Tm3+的光谱特性. 物理学报, 2004, 53(10): 3591-3595. doi: 10.7498/aps.53.3591
    [20] 宋峰, 谭浩, 商美茹, 张光寅, 程振祥, 陈焕矗. 掺Er3+的NaY(WO4)2晶体的光谱特性. 物理学报, 2002, 51(10): 2375-2379. doi: 10.7498/aps.51.2375
计量
  • 文章访问数:  5590
  • PDF下载量:  638
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-28
  • 修回日期:  2012-10-18
  • 刊出日期:  2013-03-05

/

返回文章
返回