搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究

颜小珍 邝小渝 毛爱杰 匡芳光 王振华 盛晓伟

引用本文:
Citation:

高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究

颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟

First-principles study on the elastic, electronic and thermodynamic properties of ErNi2B2C under high pressure

Yan Xiao-Zhen, Kuang Xiao-Yu, Mao Ai-Jie, Kuang Fang-Guang, Wang Zhen-Hua, Sheng Xiao-Wei
PDF
导出引用
  • 采用密度泛函理论中的赝势平面波方法研究了高压下超导材料 ErNi2B2C 的弹性性质、电子结构和热力学性质.分析表明, 弹性常数、体弹模量、剪切模量、杨氏模量和弹性各向异性因子的外压力效应明显. 电子态密度(DOS)的计算结果显示, 在费米能级(EF)处的 DOS 峰随外界压强的增大显著降低, 由于 ErNi2B2C 相对较高的超导温度(Tc)起因于EF处的 DOS 峰, 因此推测压强增大可能会降低 ErNi2B2C 的 Tc.类似的现象在超导材料 MgB2和 SrAlSi 中已被发现.此外, 基于准谐德拜模型, 对 ErNi2B2C 在高温高压下的热力学性质的研究表明, 在一定范围内, 温度和压强将对其热膨胀系数和热容产生明显的影响.
    The elastic, electronic and thermodynamic properties of the superconducting ErNi2B2C material at high pressure are investigated using the plane-wave pseudopotential density functional theory. The analysis shows the dependences of the elastic constants, bulk modulus, shear modulus, Young's modulus and elastic anisotropy factors on the applied pressure. The calculated electronic density of states (DOS) reveals that the DOS peak at the Fermi level (EF) will decrease noticeably with pressure. It can be concluded that the pressure may reduce the superconducting temperature (Tc) of ErNi2B2C since the relatively high Tc originates from the peak in the DOS. This phenomenon is also found in some other superconductors such as MgB2 and SrAlSi. Moreover, based on the quasi-harmonic Debye model, the results of the thermodynamic properties indicate that the pressure and temperature have significant influences on the thermal expansion coefficient and heat capacity.
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 11104190)、国家自然科学基金(批准号: 11274235)和高等学校博士学科点专项科研基金(批准号: 20100181110086, 20110181120112)资助的课题.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11104190), the National Natural Science Foundation of China (Grant No. 11274235) and the Doctoral Education Fund of Education Ministry of China (Grant Nos. 20100181110086, 20110181120112).
    [1]

    Cava R J, Takagi H, Zandbergen H W, Krajewski J J, Peck Jr W F, Siegrist T, Batlogg B, van Dover R B, Felder R J, Mizuhashi K, Lee J O, Eisaki H, Uchida S 1994 Nature 367 252

    [2]

    Siegrist T, Zandbergen H W, Cava R J, Krajewski J J, Peck Jr W F 1994 Nature 367 254

    [3]

    Cho B K, Canfield P C, Johnston D C 1995 Phys. Rev. B 52 3844

    [4]

    Pickett W E, Singh D J 1994 Phys. Rev. Lett. 72 3702

    [5]

    Mattheiss L F 1994 Phys. Rev. B 49 13279

    [6]

    Hoellwarth C C, Klavins P, Shelton R N 1996 Phys. Rev. B 53 2579

    [7]

    Sánchez D R, Micklitz H, Baggio-Saitovitch E M 2005 Phys. Rev. B 71 024509

    [8]

    Canfield P C, Gammel P L, Bishop D J 1998 Phys. Today 51 40

    [9]

    Bud'ko S, Canfield P 2006 C. R. Phys. 7 56

    [10]

    Choi S M, Lynn J W, Lopez J W, Gammel P L, Canfield P C, Bud'ko S L 2001 Phys. Rev. Lett. 87 107001

    [11]

    Kawano-Furukawa H, Takeshita H, Ochiai M, Nagata T, Yoshizawa H, Furukawa N, Takeya H, Kadowaki K 2002 Phys. Rev. B 65 180508

    [12]

    Schmidt H, Braun H F 1994 Physica C 229 315

    [13]

    Alleno E, Neumeier J J, Thompson J D, Canfield P C, Cho B K 1995 Physica C 242 169

    [14]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [15]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [16]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [17]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [18]

    Jiao Z Y, Yang J F, Zhang X Z, Ma S H, Guo Y L 2011 Acta Phys. Sin. 60 117103 (in Chinese) [焦照勇, 杨继飞, 张现周, 马淑红, 郭永亮 2011 物理学报 60 117103]

    [19]

    Li S N, Liu Y 2010 Acta Phys. Sin. 59 6882 (in Chinese) [李世娜, 刘 永 2010 物理学报 59 6882]

    [20]

    Zhang W, Chen W Z, Wang J F, Zhang X D, Jiang Z Y 2012 Acta Phys. Sin. 61 246201 (in Chinese) [张 炜, 陈文周, 王俊斐, 张小东, 姜振益 2012 物理学报 61 246201]

    [21]

    Chen H C, Yang L J 2011 Acta Phys. Sin. 60 014207 (in Chinese) [陈海川, 杨利君 2011 物理学报 60 014207]

    [22]

    Blanco M A, Francisco E, Luana V 2004 Comp. Phys. Commun. 158 57

    [23]

    Lynn J W, Skanthakumar S, Huang Q, Sinha S K, Hossain Z, Gupta L C, Nagarajan R, Godart C 1997 Phys. Rev. B 55 6584

    [24]

    Ranganathan S I, Ostoja-Starzewski M 2008 Phys. Rev. Lett. 101 055504

    [25]

    Chung D H, Buessem W R 1968 edited by Vahldiek F W, Mersol S A Anisotropy in Single Crystal Refractory Compound (Vol.2) (New York: Plenum) p217

    [26]

    Rourke P M C, Paglione J, Ronning F, Taillefer L, Kadowaki K 2003 Physica C 397 1

    [27]

    Meenakshi S, Vijayakumar V, Rao R S, Sikka B K, Ravindran P, Hossain Z, Nagarajan R, Gupta L C, Vijayaraghavan R 1998 Phys. Rev. B 58 3377

    [28]

    Weht R, Cappannini O M, Rodríguez C O, Christensen N E 1996 Physica C 260 125

    [29]

    Ravindran P, Fast L, PKorzhavyi. A, Johansson B, Wills J, Eriksson O 1998 J. Appl. Phys. 84 4891

    [30]

    Calegari E J, Magalhães S G, Chaves C M, Troper A 2011 Supercond. Sci. Technol. 24 035004

    [31]

    Wang Y C, Lü J, Ma Y M, Cui T, Zou G T 2009 Phys. Rev. B 80 092505

    [32]

    Lorenz B, Cmaidalka J, Meng R L, Chu C W 2003 Phys. Rev. B 68 014512

  • [1]

    Cava R J, Takagi H, Zandbergen H W, Krajewski J J, Peck Jr W F, Siegrist T, Batlogg B, van Dover R B, Felder R J, Mizuhashi K, Lee J O, Eisaki H, Uchida S 1994 Nature 367 252

    [2]

    Siegrist T, Zandbergen H W, Cava R J, Krajewski J J, Peck Jr W F 1994 Nature 367 254

    [3]

    Cho B K, Canfield P C, Johnston D C 1995 Phys. Rev. B 52 3844

    [4]

    Pickett W E, Singh D J 1994 Phys. Rev. Lett. 72 3702

    [5]

    Mattheiss L F 1994 Phys. Rev. B 49 13279

    [6]

    Hoellwarth C C, Klavins P, Shelton R N 1996 Phys. Rev. B 53 2579

    [7]

    Sánchez D R, Micklitz H, Baggio-Saitovitch E M 2005 Phys. Rev. B 71 024509

    [8]

    Canfield P C, Gammel P L, Bishop D J 1998 Phys. Today 51 40

    [9]

    Bud'ko S, Canfield P 2006 C. R. Phys. 7 56

    [10]

    Choi S M, Lynn J W, Lopez J W, Gammel P L, Canfield P C, Bud'ko S L 2001 Phys. Rev. Lett. 87 107001

    [11]

    Kawano-Furukawa H, Takeshita H, Ochiai M, Nagata T, Yoshizawa H, Furukawa N, Takeya H, Kadowaki K 2002 Phys. Rev. B 65 180508

    [12]

    Schmidt H, Braun H F 1994 Physica C 229 315

    [13]

    Alleno E, Neumeier J J, Thompson J D, Canfield P C, Cho B K 1995 Physica C 242 169

    [14]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [15]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [16]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [17]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [18]

    Jiao Z Y, Yang J F, Zhang X Z, Ma S H, Guo Y L 2011 Acta Phys. Sin. 60 117103 (in Chinese) [焦照勇, 杨继飞, 张现周, 马淑红, 郭永亮 2011 物理学报 60 117103]

    [19]

    Li S N, Liu Y 2010 Acta Phys. Sin. 59 6882 (in Chinese) [李世娜, 刘 永 2010 物理学报 59 6882]

    [20]

    Zhang W, Chen W Z, Wang J F, Zhang X D, Jiang Z Y 2012 Acta Phys. Sin. 61 246201 (in Chinese) [张 炜, 陈文周, 王俊斐, 张小东, 姜振益 2012 物理学报 61 246201]

    [21]

    Chen H C, Yang L J 2011 Acta Phys. Sin. 60 014207 (in Chinese) [陈海川, 杨利君 2011 物理学报 60 014207]

    [22]

    Blanco M A, Francisco E, Luana V 2004 Comp. Phys. Commun. 158 57

    [23]

    Lynn J W, Skanthakumar S, Huang Q, Sinha S K, Hossain Z, Gupta L C, Nagarajan R, Godart C 1997 Phys. Rev. B 55 6584

    [24]

    Ranganathan S I, Ostoja-Starzewski M 2008 Phys. Rev. Lett. 101 055504

    [25]

    Chung D H, Buessem W R 1968 edited by Vahldiek F W, Mersol S A Anisotropy in Single Crystal Refractory Compound (Vol.2) (New York: Plenum) p217

    [26]

    Rourke P M C, Paglione J, Ronning F, Taillefer L, Kadowaki K 2003 Physica C 397 1

    [27]

    Meenakshi S, Vijayakumar V, Rao R S, Sikka B K, Ravindran P, Hossain Z, Nagarajan R, Gupta L C, Vijayaraghavan R 1998 Phys. Rev. B 58 3377

    [28]

    Weht R, Cappannini O M, Rodríguez C O, Christensen N E 1996 Physica C 260 125

    [29]

    Ravindran P, Fast L, PKorzhavyi. A, Johansson B, Wills J, Eriksson O 1998 J. Appl. Phys. 84 4891

    [30]

    Calegari E J, Magalhães S G, Chaves C M, Troper A 2011 Supercond. Sci. Technol. 24 035004

    [31]

    Wang Y C, Lü J, Ma Y M, Cui T, Zou G T 2009 Phys. Rev. B 80 092505

    [32]

    Lorenz B, Cmaidalka J, Meng R L, Chu C W 2003 Phys. Rev. B 68 014512

  • [1] 付现凯, 陈万骐, 姜钟生, 杨波, 赵骧, 左良. Ti3O5弹性、电子和光学性质的第一性原理研究. 物理学报, 2019, 68(20): 207301. doi: 10.7498/aps.68.20190664
    [2] 吕常伟, 王臣菊, 顾建兵. 高温高压下立方氮化硼和六方氮化硼的结构、力学、热力学、电学以及光学性质的第一性原理研究. 物理学报, 2019, 68(7): 077102. doi: 10.7498/aps.68.20182030
    [3] 胡洁琼, 谢明, 陈家林, 刘满门, 陈永泰, 王松, 王塞北, 李爱坤. Ti3AC2相(A = Si,Sn,Al,Ge)电子结构、弹性性质的第一性原理研究. 物理学报, 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [4] 邓世杰, 赵宇宏, 侯华, 文志勤, 韩培德. 高压下Ti2AlX(X=C,N)的结构、力学性能及热力学性质. 物理学报, 2017, 66(14): 146101. doi: 10.7498/aps.66.146101
    [5] 吴若熙, 刘代俊, 于洋, 杨涛. CaS电子结构和热力学性质的第一性原理计算. 物理学报, 2016, 65(2): 027101. doi: 10.7498/aps.65.027101
    [6] 刘博, 王煊军, 卜晓宇. 高压下NH4ClO4结构、电子及弹性性质的第一性原理研究. 物理学报, 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [7] 翟东, 韦昭, 冯志芳, 邵晓红, 张平. 铜钨合金高温高压性质的第一性原理研究. 物理学报, 2014, 63(20): 206501. doi: 10.7498/aps.63.206501
    [8] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算. 物理学报, 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [9] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算. 物理学报, 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [10] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质. 物理学报, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [11] 杨则金, 令狐荣锋, 程新路, 杨向东. Cr2MC(M=Al, Ga)的电子结构、弹性和热力学性质的第一性原理研究. 物理学报, 2012, 61(4): 046301. doi: 10.7498/aps.61.046301
    [12] 陈中钧. 高压下MgS的弹性性质、电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(17): 177104. doi: 10.7498/aps.61.177104
    [13] 王斌, 刘颖, 叶金文. 高压下TiC的弹性、电子结构及热力学性质的第一性原理计算. 物理学报, 2012, 61(18): 186501. doi: 10.7498/aps.61.186501
    [14] 汝强, 胡社军, 赵灵智. LixFePO4(x=0.0, 0.75, 1.0)电子结构与弹性性质的第一性原理研究. 物理学报, 2011, 60(3): 036301. doi: 10.7498/aps.60.036301
    [15] 陈海川, 杨利君. LiGaX2(X=S, Se, Te)的电子结构,光学和弹性性质的第一性原理计算. 物理学报, 2011, 60(1): 014207. doi: 10.7498/aps.60.014207
    [16] 李晓凤, 刘中利, 彭卫民, 赵阿可. 高压下CaPo弹性性质和热力学性质的第一性原理研究. 物理学报, 2011, 60(7): 076501. doi: 10.7498/aps.60.076501
    [17] 侯榆青, 张小东, 姜振益. 第一性原理计算MAlH4(M=Na, K)的结构和弹性性质. 物理学报, 2010, 59(8): 5667-5671. doi: 10.7498/aps.59.5667
    [18] 陈怡, 申江. NaZn13型Fe基化合物的结构和热力学性质研究. 物理学报, 2009, 58(13): 141-S145. doi: 10.7498/aps.58.141
    [19] 刘娜娜, 宋仁伯, 孙翰英, 杜大伟. Mg2Sn电子结构及热力学性质的第一性原理计算. 物理学报, 2008, 57(11): 7145-7150. doi: 10.7498/aps.57.7145
    [20] 丁迎春, 徐 明, 潘洪哲, 沈益斌, 祝文军, 贺红亮. γ-Si3N4在高压下的电子结构和物理性质研究. 物理学报, 2007, 56(1): 117-122. doi: 10.7498/aps.56.117
计量
  • 文章访问数:  5347
  • PDF下载量:  527
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-06
  • 修回日期:  2012-12-26
  • 刊出日期:  2013-05-05

/

返回文章
返回