搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用相干光照明的纹影成像装置研究飞秒激光脉冲烧蚀铝靶喷射物相位的超快时间演化

杨景辉 张楠 朱晓农

引用本文:
Citation:

利用相干光照明的纹影成像装置研究飞秒激光脉冲烧蚀铝靶喷射物相位的超快时间演化

杨景辉, 张楠, 朱晓农

Investigation of the ultrafast phase evolution of the ejected material generated during femtosecond laser ablation of aluminum by the coherent light illuminated schlieren apparatus

Yang Jing-Hui, Zhang Nan, Zhu Xiao-Nong
PDF
导出引用
  • 本文提出了一种基于纹影成像装置的新型相位检测方法, 并使用该方法对飞秒激光烧蚀铝靶产生的喷射物的超快相位演化过程进行了实验研究. 与传统的纹影法不同, 本文的相位检测方法使用相干光作为成像照明光, 利用未透过样品的背景光作为参考光, 借助透过样品后在纹影装置刀口处衍射的照明光与背景照明光的干涉, 检测样品的相位; 其最显著的优点是能够清晰反映被测样品mπ或2mπ (m为整数) 的相位改变. 利用该方法, 结合抽运-探测技术, 研究了激光流量为5.4 J/cm2的50 fs脉冲激光烧蚀铝靶产生的喷射物的超快相位演化. 实验发现, 烧蚀过程中形成的喷射物可分为三个相位不同的区域, 分别对应等离子体态的喷射物、后续的垂直靶面喷射的物质和冲击波. 其中, 等离子体态的喷射物在0–9.0 ns的时间延迟内, 由于膨胀和电子复合作用, 相位变化超过π; 而后续的垂直靶面的喷射物在此时间内的相位变化没有超过π.
    A novel phase measurement method based on the schlieren apparatus is proposed, and the ultrafast phase evolution of the ejected material generated during the femtosecond laser ablation of aluminum is experimentally studied by this method. Different from the conventional schlieren technique, the phase measurement method presented in this work uses coherent light as the illuminating light. The specimen's phase under-test is derived with the help of the interference between the light which irradiates the surroundings of the specimen and the light which transmits through the specimen and diffracts on the razor edge of the schlieren apparatus. One remarkable merit of this method is that it can clearly exhibit the specimen's phase variation of mπ or 2mπ (m is an integer). The ultrafast process of the ejected material generated during the 5.4 J/cm2, 50 fs laser pulses ablation of the aluminum target is investigated by this novel phase measurement method and the pump-probe technique. Results show that the ejected material is composed of three sequentially appearing regions with different phase evolving processes, which are respectively corresponding to the ejected plasma-state material, the successively ejected material normal to the target surface and the shock wave. It is also found that during the time interval of 0–9.0 ns after the femtosecond pulse strikes the target, the phase of the ejected plasma-state material varies beyond π due to the expansion and recombination, but the phase variation of the successively ejected material does not exceed π.
    • 基金项目: 国家自然科学基金(批准号: 11004111和61137001);天津市自然科学基金(批准号: 10JCZDGX35100);高等学校博士学科点专项科研基金(批准号: 20100031120034)和中央高校基本科研业务费专项资金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11004111, 61137001), the Tianjin Natural Science Foundation, China (Grant No. 10JCZDGX35100), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100031120034), and the Fundamental Research Funds for the Central Universities.
    [1]

    Lu P, Men L, Sooley K, Chen Q 2009 Appl. Phys. Lett. 94 131110

    [2]

    Rodriguez G, Valenzuela A R, Yellampalle B, Schmitt M J, Kim K Y 2008 J. Opt. Soc. Am. B 25 1988

    [3]

    Yuan C J, Zhai H C, Wang X L, Wu L 2007 Acta Phys. Sin. 56 218 (in Chinese) [袁操今, 翟宏琛, 王晓雷, 吴兰 2007 物理学报 56 218]

    [4]

    Chigarev N, Tournat V, Gusev V 2012 Appl. Phys. Lett. 100 144102

    [5]

    Hu H F, Wang X L, Li Z L, Zhang N, Zhai H C 2009 Acta Phys. Sin. 58 7662 (in Chinese) [胡浩峰, 王晓雷, 李智磊, 张楠, 翟宏琛 2009 物理学报 58 7662]

    [6]

    Berry S A, Gates J C, Brocklesby W S 2011 Appl. Phys. Lett. 99 141107

    [7]

    Xu X F, Cai L Z, Wang Y R, Li D L 2010 Chin. Phys. Lett. 27 024215

    [8]

    Börner M, Fils J, Frank A, Blažević A, Hessling T, Pelka A, Schaumann G, Schökel A, Schumacher D, Basko M M, Maruhn J, Tauschwitz A, Roth M 2012 Rev. Sci. Inst. 83 043501

    [9]

    Gao P, Yao B, Harder I, Lindlein N, Torcal-Milla F J 2011 Opt. Lett. 36 4305

    [10]

    Popescu G, Deflores L P, Vaughan J C 2004 Opt. Lett. 29 2503

    [11]

    Albrecht H S, Heist P, Kleinschmidt J, Lap D V 1993 Appl. Phys. B

    [12]

    Paganin D, Nugent K A 1998 Phys. Rev. Lett. 80 2586

    [13]

    Estevadeordal J, Gogineni S, Kimmel R L, Hayes J R 2007 Exp. Therm. Fluid. Sci. 32 98

    [14]

    Brackenridge J B, Gilbert W P 1965 Appl. Opt. 4 819

    [15]

    Zhang N, Zhu X, Yang J, Wang X, Wang M 2007 Phys. Rev. Lett. 99 167602

    [16]

    Zhang N, Yang J J, Wang M W, Zhu X N 2006 Chin. Phys. Lett. 23 3281

    [17]

    Chung S H, Mazur E 2009 J. Biophoton. 10 557

    [18]

    Frankevich V, Nieckarz R J, Sagulenko P N, Barylyuk K, Zenobi R, Levitsky L I, Agapov A Y, Perlova T Y, Gorshkov M V, Tarasova I A 2012 Rapid Commun. Mass Spectrom. 26 1567

    [19]

    Settles G S 2006 Schlieren and Shadowgraph Techniques: visualizing phenomena in transparent media (2st Edn.) (Berlin: Springer-Verlag) p33

    [20]

    Su X, Li J 1999 Information Optics (Beijing: Science Press) p54 (in Chinese) [苏显渝, 李继陶 1999 信息光学 (北京: 科学出版社) 第54页]

    [21]

    Zhang N, Yang J, Zhu X 2012 Chin. J. Laser. 39 0503002 (in Chinese) [张楠, 杨景辉, 朱晓农 2012 中国激光 39 0503002]

    [22]

    Vidal F, Johnston T W, Laville S, Barthélemy O, Chaker M, Drogoff B L, Margot J, Sabsabi M 2001 Phys. Rev. Lett. 86 2573

    [23]

    Perez D, Lewis L J 2002 Phys. Rev. Lett. 89 255504

    [24]

    Hu H, Wang X, Zhai H 2011 Opt. Lett. 36 124

    [25]

    Sedov L I 1993 Similarity and dimensional methods in mechanics (Boca Raton: CRC Press) p261-296

    [26]

    Strohbehn J W, Clifford S F 1978 Laser beam propagation in the atmosphere (New York: Springer-Verlag) p10

    [27]

    Wu Z, Zhu X, Zhang N 2011 J. Appl. Phys. 109 053113

    [28]

    Guo S H 1997 Electrodynamics (Beijing: Higher Education Press) p173 (in Chinese) p173 [郭硕鸿 1997 电动力学 (北京: 高等教育出版社) 第173页]

    [29]

    Sirven J B, Bousquet B, Canioni L, Sarger L 2004 Spectrochim. Acta Parb B 59 1033

    [30]

    Callies G, Berger P, Hugel H 1995 J. Phys. D: Appl. Phys. 28 794

  • [1]

    Lu P, Men L, Sooley K, Chen Q 2009 Appl. Phys. Lett. 94 131110

    [2]

    Rodriguez G, Valenzuela A R, Yellampalle B, Schmitt M J, Kim K Y 2008 J. Opt. Soc. Am. B 25 1988

    [3]

    Yuan C J, Zhai H C, Wang X L, Wu L 2007 Acta Phys. Sin. 56 218 (in Chinese) [袁操今, 翟宏琛, 王晓雷, 吴兰 2007 物理学报 56 218]

    [4]

    Chigarev N, Tournat V, Gusev V 2012 Appl. Phys. Lett. 100 144102

    [5]

    Hu H F, Wang X L, Li Z L, Zhang N, Zhai H C 2009 Acta Phys. Sin. 58 7662 (in Chinese) [胡浩峰, 王晓雷, 李智磊, 张楠, 翟宏琛 2009 物理学报 58 7662]

    [6]

    Berry S A, Gates J C, Brocklesby W S 2011 Appl. Phys. Lett. 99 141107

    [7]

    Xu X F, Cai L Z, Wang Y R, Li D L 2010 Chin. Phys. Lett. 27 024215

    [8]

    Börner M, Fils J, Frank A, Blažević A, Hessling T, Pelka A, Schaumann G, Schökel A, Schumacher D, Basko M M, Maruhn J, Tauschwitz A, Roth M 2012 Rev. Sci. Inst. 83 043501

    [9]

    Gao P, Yao B, Harder I, Lindlein N, Torcal-Milla F J 2011 Opt. Lett. 36 4305

    [10]

    Popescu G, Deflores L P, Vaughan J C 2004 Opt. Lett. 29 2503

    [11]

    Albrecht H S, Heist P, Kleinschmidt J, Lap D V 1993 Appl. Phys. B

    [12]

    Paganin D, Nugent K A 1998 Phys. Rev. Lett. 80 2586

    [13]

    Estevadeordal J, Gogineni S, Kimmel R L, Hayes J R 2007 Exp. Therm. Fluid. Sci. 32 98

    [14]

    Brackenridge J B, Gilbert W P 1965 Appl. Opt. 4 819

    [15]

    Zhang N, Zhu X, Yang J, Wang X, Wang M 2007 Phys. Rev. Lett. 99 167602

    [16]

    Zhang N, Yang J J, Wang M W, Zhu X N 2006 Chin. Phys. Lett. 23 3281

    [17]

    Chung S H, Mazur E 2009 J. Biophoton. 10 557

    [18]

    Frankevich V, Nieckarz R J, Sagulenko P N, Barylyuk K, Zenobi R, Levitsky L I, Agapov A Y, Perlova T Y, Gorshkov M V, Tarasova I A 2012 Rapid Commun. Mass Spectrom. 26 1567

    [19]

    Settles G S 2006 Schlieren and Shadowgraph Techniques: visualizing phenomena in transparent media (2st Edn.) (Berlin: Springer-Verlag) p33

    [20]

    Su X, Li J 1999 Information Optics (Beijing: Science Press) p54 (in Chinese) [苏显渝, 李继陶 1999 信息光学 (北京: 科学出版社) 第54页]

    [21]

    Zhang N, Yang J, Zhu X 2012 Chin. J. Laser. 39 0503002 (in Chinese) [张楠, 杨景辉, 朱晓农 2012 中国激光 39 0503002]

    [22]

    Vidal F, Johnston T W, Laville S, Barthélemy O, Chaker M, Drogoff B L, Margot J, Sabsabi M 2001 Phys. Rev. Lett. 86 2573

    [23]

    Perez D, Lewis L J 2002 Phys. Rev. Lett. 89 255504

    [24]

    Hu H, Wang X, Zhai H 2011 Opt. Lett. 36 124

    [25]

    Sedov L I 1993 Similarity and dimensional methods in mechanics (Boca Raton: CRC Press) p261-296

    [26]

    Strohbehn J W, Clifford S F 1978 Laser beam propagation in the atmosphere (New York: Springer-Verlag) p10

    [27]

    Wu Z, Zhu X, Zhang N 2011 J. Appl. Phys. 109 053113

    [28]

    Guo S H 1997 Electrodynamics (Beijing: Higher Education Press) p173 (in Chinese) p173 [郭硕鸿 1997 电动力学 (北京: 高等教育出版社) 第173页]

    [29]

    Sirven J B, Bousquet B, Canioni L, Sarger L 2004 Spectrochim. Acta Parb B 59 1033

    [30]

    Callies G, Berger P, Hugel H 1995 J. Phys. D: Appl. Phys. 28 794

  • [1] 高兆琳, 刘瑞桦, 温凯, 马英, 李建郎, 郜鹏. 结构光照明相位/荧光双模式显微技术. 物理学报, 2022, 71(24): 244203. doi: 10.7498/aps.71.20221518
    [2] 千佳, 党诗沛, 周兴, 但旦, 汪召军, 赵天宇, 梁言生, 姚保利, 雷铭. 基于希尔伯特变换的结构光照明快速三维彩色显微成像方法. 物理学报, 2020, 69(12): 128701. doi: 10.7498/aps.69.20200352
    [3] 葛银娟, 潘兴臣, 刘诚, 朱健强. 基于相干调制成像的光学检测技术. 物理学报, 2020, 69(17): 174202. doi: 10.7498/aps.69.20200224
    [4] 高妍琦, 赵晓晖, 贾果, 李福建, 崔勇, 饶大幸, 季来林, 刘栋, 冯伟, 黄秀光, 马伟新, 隋展. 基于低相干光的阵列透镜束匀滑技术研究. 物理学报, 2019, 68(7): 075201. doi: 10.7498/aps.68.20182138
    [5] 闫博, 陈力, 陈爽, 李猛, 殷一民, 周江宁. 结构光照明技术在二维激光诱导荧光成像去杂散光中的应用. 物理学报, 2019, 68(21): 218701. doi: 10.7498/aps.68.20190977
    [6] 陈聪, 梁盼, 胡蓉蓉, 贾天卿, 孙真荣, 冯东海. 抽运-自旋定向-探测技术及其应用. 物理学报, 2018, 67(9): 097201. doi: 10.7498/aps.67.20180244
    [7] 张崇磊, 辛自强, 闵长俊, 袁小聪. 表面等离激元结构光照明显微成像技术研究进展. 物理学报, 2017, 66(14): 148701. doi: 10.7498/aps.66.148701
    [8] 李高芳, 马国宏, 马红, 初凤红, 崔昊杨, 刘伟景, 宋小军, 江友华, 黄志明, 褚君浩. 光抽运太赫兹探测技术研究ZnSe的光致载流子动力学特性. 物理学报, 2016, 65(24): 247201. doi: 10.7498/aps.65.247201
    [9] 唐弢, 赵晨, 陈志彦, 李鹏, 丁志华. 超高分辨光学相干层析成像技术与材料检测应用. 物理学报, 2015, 64(17): 174201. doi: 10.7498/aps.64.174201
    [10] 余伟, 何小亮, 刘诚, 朱健强. 非相干照明条件下的ptychographic iterative engine成像技术. 物理学报, 2015, 64(24): 244201. doi: 10.7498/aps.64.244201
    [11] 张天天, 易仕和, 朱杨柱, 何霖. 基于背景纹影波前传感技术的气动光学波前重构与校正. 物理学报, 2015, 64(8): 084201. doi: 10.7498/aps.64.084201
    [12] 赵应春, 张秀英, 袁操今, 聂守平, 朱竹青, 王林, 李杨, 贡丽萍, 冯少彤. 基于涡旋光照明的暗场数字全息显微方法研究. 物理学报, 2014, 63(22): 224202. doi: 10.7498/aps.63.224202
    [13] 赵晨, 陈志彦, 丁志华, 李鹏, 沈毅, 倪秧. 线照明并行谱域光学相干层析成像系统与缺陷检测应用研究. 物理学报, 2014, 63(19): 194201. doi: 10.7498/aps.63.194201
    [14] 生雪莉, 芦嘉, 凌青, 徐江, 董伟佳. 多基地空时码探测信号设计及时反相关检测技术. 物理学报, 2014, 63(5): 054303. doi: 10.7498/aps.63.054303
    [15] 张文喜, 相里斌, 孔新新, 李杨, 伍洲, 周志盛. 相干场成像技术分辨率研究. 物理学报, 2013, 62(16): 164203. doi: 10.7498/aps.62.164203
    [16] 刘伟, 陈丹妮, 刘双龙, 牛憨笨. 超衍射极限相干反斯托克斯拉曼散射显微成像技术及其探测极限分析. 物理学报, 2013, 62(16): 164202. doi: 10.7498/aps.62.164202
    [17] 刘国忠, 周哲海, 邱钧, 王晓飞, 刘桂礼, 王瑞康. 幅值和相位配准技术及其在光学相干层析血流成像中的应用. 物理学报, 2013, 62(15): 158702. doi: 10.7498/aps.62.158702
    [18] 李斐, 饶长辉. 基于相位差混合处理方法的高分辨力成像技术. 物理学报, 2012, 61(2): 029502. doi: 10.7498/aps.61.029502
    [19] 龙拥兵, 张剑, 汪国平. 基于表面等离子体激元共振的飞秒抽运探测技术研究. 物理学报, 2009, 58(11): 7722-7726. doi: 10.7498/aps.58.7722
    [20] 屠锦洪, 詹黎. 部分相干光照明下旋转双光栅衍射干涉效应. 物理学报, 1991, 40(9): 1424-1424. doi: 10.7498/aps.40.1424
计量
  • 文章访问数:  5082
  • PDF下载量:  816
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-07
  • 修回日期:  2013-03-26
  • 刊出日期:  2013-07-05

/

返回文章
返回