搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有结构壁面上液滴运动特征的耗散粒子动力学模拟

姚祎 周哲玮 胡国辉

引用本文:
Citation:

有结构壁面上液滴运动特征的耗散粒子动力学模拟

姚祎, 周哲玮, 胡国辉

Movement of a droplet on a structured substrate: A dissipative particle dynamics simulation study

Yao Yi, Zhou Zhe-Wei, Hu Guo-Hui
PDF
导出引用
  • 本文采用耗散粒子动力学方法, 研究了恒定外力驱动下液滴在有结构壁面上的运动过程. 通过研究液滴在通过壁面结构时前缘接触点和前进角的变化, 分析了液滴的运动特征. 研究结果表明, 在不同润湿性或不同外力驱动下, 存在使液滴运动最快的“最优”壁面结构, 并对其机理进行了讨论. 本文还探讨了壁面润湿性、热涨落以及外力对液滴运动状态的影响.
    The last decade has witnessed the explosive development of microfluidic systems. Droplet manipulation is one of the crucial technologies in design and optimization of microfluidic devices. In the present study, dissipative particle dynamics is applied to investigate the movement of a liquid droplet actuated by a constant force on structured substrate with different wetting properties ranging from hydrophilic to hydrophobic. By monitoring the variation of the advancing contact angle and the front position of droplet, the characteristics of the droplet motion is analyzed in detail. Results indicate that there exists an optimal structure for which the droplet has a largest speed. Additionally, the influences of wettability gradient, thermal fluctuation and external force are discussed. We find thermal fluctuation is helpful for the movement of droplet.
    • 基金项目: 国家自然科学基金(批准号: 11272197);教育部博士点基金(批准号: 20103108110004)和上海市高校创新团队资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11272197), Doctoral Fund of Ministry of Education of China (Grant No. 20103108110004), and the Shanghai Program for Innovative Research Team in Universities.
    [1]

    Fan X, Phan-Thien N, Chen S, Wu X, Ng T Y 2006 Phys. Fluids. 18 063102

    [2]

    de Gans B J, Schubert U S 2003 Macromol. Rapid. Commun. 24 659

    [3]

    Chaudhury M K, Whitesides G M 1992 Science 256 5063

    [4]

    Das A, Das P 2010 Langmuir 26 9547

    [5]

    Shi Z Y, Hu G H, Zhou Z W 2010 Acta. Phys. Sin. 59 2595 (in Chinese) [石自媛, 胡国辉, 周哲玮 2010 物理学报 59 2595]

    [6]

    Li Z 2011 Ph.D. Dissertation (Shanghai: Shanghai University) (in Chinese) [李振 2011 博士学位论文 (上海: 上海大学)]

    [7]

    Cassie A, Baxter S 1944 Tran. Fara. Soci. 40 546

    [8]

    Ou J, Perot B, Rothstein J P 2004 Phys.Fluids 16 4635

    [9]

    Davies J, Maynes D, Webb B, Woolford B 2006 Phys.Fluids. 18 087110

    [10]

    Ou J, Rothstein JP 2005 Phy. Fluids. 17 103606

    [11]

    Johnson Jr R, Dettre R 1964 Adv. Chem. Ser. 43 112

    [12]

    Zu Y, Yan Y, Li J, Han Z 2010 J.Bionic. Eng. 7 191

    [13]

    Huang J J, Shu C, Chew Y, Zheng H 2007 Int. J. Modern Phys. C 18 492

    [14]

    Huang J J, Shu C, Chew YT 2009 Phy. Fluids 21 022103

    [15]

    Yang C W, He F, Hao P F 2010 Science In China 10 1545 (in Chinese) [杨常卫, 何枫, 郝鹏飞 2010 中国科学 10 1545]

    [16]

    Yao Z H, Hao P F, Zhang X W, He F 2012 Chinese. Sci. Bull. 57 1095

    [17]

    Zhang M K, Chen S, Shang Z 2012 Acta. Phys. Sin. 61 34701 (in Chinese) [张明焜, 陈硕, 尚智 2012 物理学报 61 34701]

    [18]

    Hoogerbrugge P J, Koelman J 1992 Europhys. LeTt. 19 155

    [19]

    Rapaport D C 2004 The art of molecular dynamics simulation (England: Cambridge university press) p12

    [20]

    Hardy J, De Pazzis O, Pomeau Y 1976 Phys. Rev. A 13 1949

    [21]

    Groot R D, Madden T J 1998 J. Chem. Phy. 108 8713

    [22]

    Espańol P 1996 Phys. Rev. E 53 1572

    [23]

    Jiang W, Huang J, Wang Y, Laradji M J. Chem. Phys. 126 044901

    [24]

    Chen S, Shang Z, Zhao Y 2010 J. Tongji. University 38 767 (in Chinese) [陈硕, 尚智, 赵岩, 王丹 2010 同济大学学报 38 767]

    [25]

    Liba O, Kauzlarić D, Abrams Z R, Hanein Y, Greiner A, Korvink J G 2008 Mol. Simulat. 34 737

    [26]

    Li Z, Zhou Z W, Hu G H 2012 J. Adhes. Sci. Technol. 26 1883

    [27]

    Li H X, Qiang H F 2009 Adv. Mech. 39 165 (in Chinese) [李红霞, 强洪夫 2009 力学进展 39 165]

    [28]

    Chen S, Zhao Y, Fan X J 2006 Bull. Sci. Tech. 22 596 (in Chinese) [陈硕, 赵钧, 范西俊 2006 科技通报 22 596]

    [29]

    Li Z, Hu G H, Zhou Z W 2009 Mechanics and Engineering (in Chinese) [李振, 胡国辉, 周哲玮 2009 力学与工程]

    [30]

    Davidovitch B, Moro E, Stone H A 2005 Phys. Rev. Lett. 95 244505

    [31]

    Rauscher M, Dietrich S 2008 Annu. Rev. Mater. Res. 38 143

    [32]

    Moseler M, Landman U 2000 Sci. 289 1165

    [33]

    Groot R D, Warren P B 1997 J. Chem. Phys. 107 4423

    [34]

    Warren P B 2003 Phys. Rev. E 68 066702

    [35]

    Liu M B, Meakin P, Huang H 2007 J. Computational. Phys. 222 110

    [36]

    Liu M B, Meakin P, Huang H 2007 Phys. Fluids 19 033302

    [37]

    Liu M B, Meakin P, Huang H 2006 Phys. Fluids 18 017101

    [38]

    Chang J Z, Liu M B, Liu H T 2008 Acta. Phys. Sin. 57 3954 (in Chinese) [常建忠, 刘谋斌, 刘汉涛 2008 物理学报 57 3954]

    [39]

    Wang X L, Chen S 2010 Acta. Phys. Sin. 10 6778 (in Chinese) [王晓亮, 陈硕 2010 物理学报 10 6778]

    [40]

    Cupelli C, Henrich B, Glatzel T, Zengerle R, Moseler M, Santer M 2008 New. J. Phys. 10 043009

    [41]

    Tiwari A, Abraham J 2008 Microfluid. Nanofluid 4 227

    [42]

    Pagonabarraga I, Frenkel D 2001 J. Chem. Phys. 115 5015

    [43]

    Espanol P, Warren P 1995 Europhys. Lett. 30 191

    [44]

    Merabia S, Pagonabarraga I 2006 Eur. Phys. J. E 20 209

    [45]

    Revenga M, Zuniga I, Espanol P 1998 Int. J. Mod. Phys. 9 1319

    [46]

    Nikunen P, Karttunen M, Vattulainen I 2003 Comput. Phys. Commun. 153 407

    [47]

    Marmur A 2006 Soft. Matter. 2 12

    [48]

    Decker E, Frank B, Suo Y, Garoff S 1999 Colloids. Sur. A 156 177

    [49]

    Wenzel R N 1994 J. Phys. Chem. 53 1466

    [50]

    Patankar N A 2004 Langmuir. 20 7097

  • [1]

    Fan X, Phan-Thien N, Chen S, Wu X, Ng T Y 2006 Phys. Fluids. 18 063102

    [2]

    de Gans B J, Schubert U S 2003 Macromol. Rapid. Commun. 24 659

    [3]

    Chaudhury M K, Whitesides G M 1992 Science 256 5063

    [4]

    Das A, Das P 2010 Langmuir 26 9547

    [5]

    Shi Z Y, Hu G H, Zhou Z W 2010 Acta. Phys. Sin. 59 2595 (in Chinese) [石自媛, 胡国辉, 周哲玮 2010 物理学报 59 2595]

    [6]

    Li Z 2011 Ph.D. Dissertation (Shanghai: Shanghai University) (in Chinese) [李振 2011 博士学位论文 (上海: 上海大学)]

    [7]

    Cassie A, Baxter S 1944 Tran. Fara. Soci. 40 546

    [8]

    Ou J, Perot B, Rothstein J P 2004 Phys.Fluids 16 4635

    [9]

    Davies J, Maynes D, Webb B, Woolford B 2006 Phys.Fluids. 18 087110

    [10]

    Ou J, Rothstein JP 2005 Phy. Fluids. 17 103606

    [11]

    Johnson Jr R, Dettre R 1964 Adv. Chem. Ser. 43 112

    [12]

    Zu Y, Yan Y, Li J, Han Z 2010 J.Bionic. Eng. 7 191

    [13]

    Huang J J, Shu C, Chew Y, Zheng H 2007 Int. J. Modern Phys. C 18 492

    [14]

    Huang J J, Shu C, Chew YT 2009 Phy. Fluids 21 022103

    [15]

    Yang C W, He F, Hao P F 2010 Science In China 10 1545 (in Chinese) [杨常卫, 何枫, 郝鹏飞 2010 中国科学 10 1545]

    [16]

    Yao Z H, Hao P F, Zhang X W, He F 2012 Chinese. Sci. Bull. 57 1095

    [17]

    Zhang M K, Chen S, Shang Z 2012 Acta. Phys. Sin. 61 34701 (in Chinese) [张明焜, 陈硕, 尚智 2012 物理学报 61 34701]

    [18]

    Hoogerbrugge P J, Koelman J 1992 Europhys. LeTt. 19 155

    [19]

    Rapaport D C 2004 The art of molecular dynamics simulation (England: Cambridge university press) p12

    [20]

    Hardy J, De Pazzis O, Pomeau Y 1976 Phys. Rev. A 13 1949

    [21]

    Groot R D, Madden T J 1998 J. Chem. Phy. 108 8713

    [22]

    Espańol P 1996 Phys. Rev. E 53 1572

    [23]

    Jiang W, Huang J, Wang Y, Laradji M J. Chem. Phys. 126 044901

    [24]

    Chen S, Shang Z, Zhao Y 2010 J. Tongji. University 38 767 (in Chinese) [陈硕, 尚智, 赵岩, 王丹 2010 同济大学学报 38 767]

    [25]

    Liba O, Kauzlarić D, Abrams Z R, Hanein Y, Greiner A, Korvink J G 2008 Mol. Simulat. 34 737

    [26]

    Li Z, Zhou Z W, Hu G H 2012 J. Adhes. Sci. Technol. 26 1883

    [27]

    Li H X, Qiang H F 2009 Adv. Mech. 39 165 (in Chinese) [李红霞, 强洪夫 2009 力学进展 39 165]

    [28]

    Chen S, Zhao Y, Fan X J 2006 Bull. Sci. Tech. 22 596 (in Chinese) [陈硕, 赵钧, 范西俊 2006 科技通报 22 596]

    [29]

    Li Z, Hu G H, Zhou Z W 2009 Mechanics and Engineering (in Chinese) [李振, 胡国辉, 周哲玮 2009 力学与工程]

    [30]

    Davidovitch B, Moro E, Stone H A 2005 Phys. Rev. Lett. 95 244505

    [31]

    Rauscher M, Dietrich S 2008 Annu. Rev. Mater. Res. 38 143

    [32]

    Moseler M, Landman U 2000 Sci. 289 1165

    [33]

    Groot R D, Warren P B 1997 J. Chem. Phys. 107 4423

    [34]

    Warren P B 2003 Phys. Rev. E 68 066702

    [35]

    Liu M B, Meakin P, Huang H 2007 J. Computational. Phys. 222 110

    [36]

    Liu M B, Meakin P, Huang H 2007 Phys. Fluids 19 033302

    [37]

    Liu M B, Meakin P, Huang H 2006 Phys. Fluids 18 017101

    [38]

    Chang J Z, Liu M B, Liu H T 2008 Acta. Phys. Sin. 57 3954 (in Chinese) [常建忠, 刘谋斌, 刘汉涛 2008 物理学报 57 3954]

    [39]

    Wang X L, Chen S 2010 Acta. Phys. Sin. 10 6778 (in Chinese) [王晓亮, 陈硕 2010 物理学报 10 6778]

    [40]

    Cupelli C, Henrich B, Glatzel T, Zengerle R, Moseler M, Santer M 2008 New. J. Phys. 10 043009

    [41]

    Tiwari A, Abraham J 2008 Microfluid. Nanofluid 4 227

    [42]

    Pagonabarraga I, Frenkel D 2001 J. Chem. Phys. 115 5015

    [43]

    Espanol P, Warren P 1995 Europhys. Lett. 30 191

    [44]

    Merabia S, Pagonabarraga I 2006 Eur. Phys. J. E 20 209

    [45]

    Revenga M, Zuniga I, Espanol P 1998 Int. J. Mod. Phys. 9 1319

    [46]

    Nikunen P, Karttunen M, Vattulainen I 2003 Comput. Phys. Commun. 153 407

    [47]

    Marmur A 2006 Soft. Matter. 2 12

    [48]

    Decker E, Frank B, Suo Y, Garoff S 1999 Colloids. Sur. A 156 177

    [49]

    Wenzel R N 1994 J. Phys. Chem. 53 1466

    [50]

    Patankar N A 2004 Langmuir. 20 7097

  • [1] 白璞, 王登甲, 刘艳峰. 润湿性影响薄液膜沸腾传热的分子动力学研究. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20232026
    [2] 胡剑, 张森, 娄钦. 电场和加热器特性对饱和池沸腾传热影响的介观数值方法研究. 物理学报, 2023, 72(17): 176401. doi: 10.7498/aps.72.20230341
    [3] 李春曦, 马成, 叶学民. 薄液滴在润湿性受限轨道上的热毛细迁移特性. 物理学报, 2023, 72(2): 024702. doi: 10.7498/aps.72.20221562
    [4] 王文远, 谢章, 郝少倩, 吴锋民, 寇建龙. 不同方向石墨烯片构筑纳米孔隙浸润特征. 物理学报, 2022, 71(19): 196101. doi: 10.7498/aps.71.20220685
    [5] 彭家略, 郭浩, 尤天涯, 纪献兵, 徐进良. 液滴碰撞Janus颗粒球表面的行为特征. 物理学报, 2021, 70(4): 044701. doi: 10.7498/aps.70.20201358
    [6] 梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿. 非对称纳米通道内界面热阻的分子动力学研究. 物理学报, 2020, 69(22): 224701. doi: 10.7498/aps.69.20200491
    [7] 梅涛, 陈占秀, 杨历, 王坤, 苗瑞灿. 纳米通道粗糙内壁对流体流动行为的影响. 物理学报, 2019, 68(9): 094701. doi: 10.7498/aps.68.20181956
    [8] 叶学民, 张湘珊, 李明兰, 李春曦. 液滴在不同润湿性表面上蒸发时的动力学特性. 物理学报, 2018, 67(11): 114702. doi: 10.7498/aps.67.20180159
    [9] 王宇翔, 陈硕. 微粗糙结构表面液滴浸润特性的多体耗散粒子动力学研究. 物理学报, 2015, 64(5): 054701. doi: 10.7498/aps.64.054701
    [10] 熊其玉, 董磊, 焦云龙, 刘小君, 刘焜. 应用激光蚀刻不同微织构表面的润湿性. 物理学报, 2015, 64(20): 206101. doi: 10.7498/aps.64.206101
    [11] 周楠, 陈硕. 带自由面流体的多体耗散粒子动力学模拟. 物理学报, 2014, 63(8): 084701. doi: 10.7498/aps.63.084701
    [12] 许少锋, 汪久根. 微通道中高分子溶液Poiseuille流的耗散粒子动力学模拟. 物理学报, 2013, 62(12): 124701. doi: 10.7498/aps.62.124701
    [13] 赵宁, 黄明亮, 马海涛, 潘学民, 刘晓英. 液态Sn-Cu钎料的黏滞性与润湿行为研究. 物理学报, 2013, 62(8): 086601. doi: 10.7498/aps.62.086601
    [14] 王陶, 李俊杰, 王锦程. 界面润湿性及固相体积分数对颗粒粗化动力学影响的相场法研究. 物理学报, 2013, 62(10): 106402. doi: 10.7498/aps.62.106402
    [15] 常建忠, 刘汉涛, 刘谋斌, 苏铁熊. 介观尺度流体绕流球体的耗散粒子动力学模拟. 物理学报, 2012, 61(6): 064704. doi: 10.7498/aps.61.064704
    [16] 石自媛, 胡国辉, 周哲玮. 润湿性梯度驱动液滴运动的格子Boltzmann模拟. 物理学报, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [17] 常建忠, 刘谋斌, 刘汉涛. 微液滴动力学特性的耗散粒子动力学模拟. 物理学报, 2008, 57(7): 3954-3961. doi: 10.7498/aps.57.3954
    [18] 王晓冬, 董 鹏, 陈胜利, 仪桂云. 亚微米聚苯乙烯微球在气-液界面组装的机理研究. 物理学报, 2007, 56(5): 3017-3021. doi: 10.7498/aps.56.3017
    [19] 王晓冬, 董 鹏, 陈胜利, 仪桂云. 亚微米聚苯乙烯微球在气-液界面组装的机理研究. 物理学报, 2007, 56(3): 1831-1836. doi: 10.7498/aps.56.1831
    [20] 王超英, 翟光杰, 吴兰生, 麦振洪, 李 宏, 张海峰, 丁炳哲. 重力对GaSb熔滴和液/固界面交互作用的影响. 物理学报, 2000, 49(10): 2094-2100. doi: 10.7498/aps.49.2094
计量
  • 文章访问数:  5295
  • PDF下载量:  823
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-17
  • 修回日期:  2013-01-14
  • 刊出日期:  2013-07-05

/

返回文章
返回