搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

瓶颈处车辆横纵向行为建模与分析

何兆成 孙文博 张力成 许菲菲 庄立坚

引用本文:
Citation:

瓶颈处车辆横纵向行为建模与分析

何兆成, 孙文博, 张力成, 许菲菲, 庄立坚

Modeling and analysis of vehicle behavior at bottlenecks

He Zhao-Cheng, Sun Wen-Bo, Zhang Li-Cheng, Xu Fei-Fei, Zhuang Li-Jian
PDF
导出引用
  • 车辆的横向偏移现象在现实的交通流中广泛存在, 交通瓶颈处的横向偏移现象往往更加显著. 车辆间横纵向的运动相互干扰, 使得瓶颈交通流组织十分混乱, 通行能力受到显著影响. 为了研究瓶颈处车辆横纵向行为规律及其对交通流的影响, 提出一个考虑横向偏移特征的车辆行为模型: 通过引入目标转向角概念,并结合经典优化速度模型, 给出了用于描述车辆的横纵向运动规律的运动方程, 同时通过分析车辆横向偏移特征, 制定了基于车辆行驶状态划分的目标转向角确定规则集. 数值模拟结果表明: 车辆的横向偏移会对交通流的运行产生影响, 在一定的横向偏移反应阈值下, 瓶颈处横向干扰于交通流的影响随着密度的增加而增加; 同时观察到了实际城市交通瓶颈的宏观及微观现象, 验证了模型的有效性.
    Microscopic traffic models are developed to simulate traffic phenomena. However, current models are usually based on the fact that vehicles travel in the middle of a single lane and make a lateral movement only when the driver wants to change lane. They are incapable of describing driving behavior in a complex traffic environment with a lot of lateral separations which may cause traffic flow to be unstable on a single lane. In order to solve the problem, in this paper we first build up the equations of motion based on target steering angle (TSA) and then establish a series of rules for determining TSA by considering the lateral separation characteristics between the follower and the leader. Finally a new vehicular behavior model is developed. The properties of the model are investigated by simulating two scenarios. It is found that the proposed model is capable of describing complex phenomena which cannot be described by existing models and explaining the perturbation caused by bus near bus stations. The results also imply that this model with taking the lateral separation characteristic into account greatly enhances the effectiveness of vehicular behavior.
    • 基金项目: 国家高技术研究发展计划(批准号: 2012AA112311)资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2012AA112311).
    [1]

    He S, Guan W, Song L Y 2010 Physica A 389 825

    [2]

    Laval J A, Leclercq L 2010 Phil. Trans. R. Soc. A 368 4519

    [3]

    Kerner B S 2002 Phys. Rev. E 65 046138

    [4]

    Siebel F, Mauser W, Moutari S, Rascle M 2009 Mathematical and Compute Modelling 49 689

    [5]

    Munoz J C, Daganzo C 2002 Trans. Res. Part B 36 483

    [6]

    Jiang R, Wu Q S, Wang B H 2002 Phy. Rev. E 66 036104

    [7]

    Fouladvand E M, Zeinab S, Shaebani R M 2004 Phys. Rev. E 70 046132

    [8]

    Zhu H B, Lei L, Dai S Q 2009 Physica A 388 2903

    [9]

    Sheng P, Zhao S L, Wang J F, Zuo H 2010 Acta Phys. Sin. 59 3831 (in Chinese) [盛鹏, 赵树龙, 王俊峰, 左航 2010 物理学报 59 3831]

    [10]

    Lei L, Dong L Y, Song T, Dai S Q 2006 Acta Phys. Sin. 55 1711 (in Chinese) [雷丽, 董力耘, 宋涛, 戴世强2006 物理学报 55 1711]

    [11]

    Reusch B 1950 Oesterreichisches Ingenieur-Archir 4 193

    [12]

    Pipes L A 1953 J. Appl. Phys. 24 274

    [13]

    Newell G F 1961 Oper. Res. 9 209

    [14]

    Bando M, Nakayama A, Sugiyama Y 1995 Phys. Rev. E 51 1035

    [15]

    Helbing D, Tilch B 1998 Phys. Rev. E 58 133

    [16]

    Jiang R, Wu Q S, Zhu Z J 2001 Phys. Rev. E 64 017101

    [17]

    Xue Y, Dong L Y, Yuan Y W, Dai S Q 2002 Acta Phys. Sin. 51 492 (in Chinese) [薛郁, 董力耘, 袁以武, 戴世强 2002 物理学报 51 492]

    [18]

    Xue Y 2003 Acta Phys. Sin. 52 2750 (in Chinese) [薛郁 2003 物理学报 52 2750]

    [19]

    Xie D F, Gao Z Y, Zhao X M, Li K P 2009 Physica A 388 2041

    [20]

    L W, Song W G, Fang Z M 2011 Physica A 390 2303

    [21]

    Toledo T, Choudhury C, Ben-Akiva M 2005 Trans. Res. Record 1934 157

    [22]

    Kesting A, Treiber M, Helbing D 2007 Trans. Res. Record 1999 86

    [23]

    Yang X B 2009 Acta Phys. Sin. 58 837 (in Chinese) [杨小宝 2009 物理学报 58 837]

    [24]

    Tang T Q, Huang H J, Gao Z Y 2005 Phys. Rev. E 72 066124

    [25]

    Jin S, Wang D H 2010 Physica A 389 4654

    [26]

    Jin S, Wang D H 2011 Trans. Res. Record 2249 7

    [27]

    Jin S, Wang D H 2012 Phys. Lett. A 376 153

    [28]

    Reymond G, Kemeny A, Droulez J, Berthoz A 2001 Human Factors 43 483

    [29]

    Gunay B 2007 Trans. Res. Part B 41 722

  • [1]

    He S, Guan W, Song L Y 2010 Physica A 389 825

    [2]

    Laval J A, Leclercq L 2010 Phil. Trans. R. Soc. A 368 4519

    [3]

    Kerner B S 2002 Phys. Rev. E 65 046138

    [4]

    Siebel F, Mauser W, Moutari S, Rascle M 2009 Mathematical and Compute Modelling 49 689

    [5]

    Munoz J C, Daganzo C 2002 Trans. Res. Part B 36 483

    [6]

    Jiang R, Wu Q S, Wang B H 2002 Phy. Rev. E 66 036104

    [7]

    Fouladvand E M, Zeinab S, Shaebani R M 2004 Phys. Rev. E 70 046132

    [8]

    Zhu H B, Lei L, Dai S Q 2009 Physica A 388 2903

    [9]

    Sheng P, Zhao S L, Wang J F, Zuo H 2010 Acta Phys. Sin. 59 3831 (in Chinese) [盛鹏, 赵树龙, 王俊峰, 左航 2010 物理学报 59 3831]

    [10]

    Lei L, Dong L Y, Song T, Dai S Q 2006 Acta Phys. Sin. 55 1711 (in Chinese) [雷丽, 董力耘, 宋涛, 戴世强2006 物理学报 55 1711]

    [11]

    Reusch B 1950 Oesterreichisches Ingenieur-Archir 4 193

    [12]

    Pipes L A 1953 J. Appl. Phys. 24 274

    [13]

    Newell G F 1961 Oper. Res. 9 209

    [14]

    Bando M, Nakayama A, Sugiyama Y 1995 Phys. Rev. E 51 1035

    [15]

    Helbing D, Tilch B 1998 Phys. Rev. E 58 133

    [16]

    Jiang R, Wu Q S, Zhu Z J 2001 Phys. Rev. E 64 017101

    [17]

    Xue Y, Dong L Y, Yuan Y W, Dai S Q 2002 Acta Phys. Sin. 51 492 (in Chinese) [薛郁, 董力耘, 袁以武, 戴世强 2002 物理学报 51 492]

    [18]

    Xue Y 2003 Acta Phys. Sin. 52 2750 (in Chinese) [薛郁 2003 物理学报 52 2750]

    [19]

    Xie D F, Gao Z Y, Zhao X M, Li K P 2009 Physica A 388 2041

    [20]

    L W, Song W G, Fang Z M 2011 Physica A 390 2303

    [21]

    Toledo T, Choudhury C, Ben-Akiva M 2005 Trans. Res. Record 1934 157

    [22]

    Kesting A, Treiber M, Helbing D 2007 Trans. Res. Record 1999 86

    [23]

    Yang X B 2009 Acta Phys. Sin. 58 837 (in Chinese) [杨小宝 2009 物理学报 58 837]

    [24]

    Tang T Q, Huang H J, Gao Z Y 2005 Phys. Rev. E 72 066124

    [25]

    Jin S, Wang D H 2010 Physica A 389 4654

    [26]

    Jin S, Wang D H 2011 Trans. Res. Record 2249 7

    [27]

    Jin S, Wang D H 2012 Phys. Lett. A 376 153

    [28]

    Reymond G, Kemeny A, Droulez J, Berthoz A 2001 Human Factors 43 483

    [29]

    Gunay B 2007 Trans. Res. Part B 41 722

  • [1] 梁经韵, 张莉莉, 栾悉道, 郭金林, 老松杨, 谢毓湘. 多路段元胞自动机交通流模型. 物理学报, 2017, 66(19): 194501. doi: 10.7498/aps.66.194501
    [2] 潘登, 郑应平. 路径约束条件下车辆行为的时空演化模型. 物理学报, 2015, 64(7): 078902. doi: 10.7498/aps.64.078902
    [3] 郑伟范, 张继业, 王明文, 唐东明. 具有加权顾前势的交通流模型. 物理学报, 2014, 63(22): 228901. doi: 10.7498/aps.63.228901
    [4] 向郑涛, 陈宇峰, 李昱瑾, 熊励. 基于多尺度熵的交通流复杂性分析. 物理学报, 2014, 63(3): 038903. doi: 10.7498/aps.63.038903
    [5] 张勇, 李诗高. 交通流突变点的无标度特征分析. 物理学报, 2014, 63(24): 240509. doi: 10.7498/aps.63.240509
    [6] 康瑞, 杨凯. 敏感换道对下匝道系统交通流的影响. 物理学报, 2013, 62(23): 238901. doi: 10.7498/aps.62.238901
    [7] 梁家源, 滕维中, 薛郁. 宏观交通流模型的能耗研究. 物理学报, 2013, 62(2): 024706. doi: 10.7498/aps.62.024706
    [8] 何兆成, 孙文博. 考虑横向分离与超车期望的车辆跟驰模型. 物理学报, 2013, 62(10): 108901. doi: 10.7498/aps.62.108901
    [9] 赵韩涛, 毛宏燕. 有应急车辆影响的多车道交通流元胞自动机模型. 物理学报, 2013, 62(6): 060501. doi: 10.7498/aps.62.060501
    [10] 梁玉娟, 薛郁. 道路弯道对交通流影响的研究. 物理学报, 2010, 59(8): 5325-5331. doi: 10.7498/aps.59.5325
    [11] 白克钊, 邝华, 刘慕仁, 孔令江. 开放边界条件下平面环行交叉路口交通流的相图研究. 物理学报, 2010, 59(9): 5990-5995. doi: 10.7498/aps.59.5990
    [12] 郑容森, 吕集尔, 朱留华, 陈时东, 庞寿全. 主干道交通流的路口效应. 物理学报, 2009, 58(8): 5244-5250. doi: 10.7498/aps.58.5244
    [13] 白克钊, 陈瑞熊, 刘慕仁, 孔令江, 郑容森. 平面环行交叉路口交通流的研究. 物理学报, 2009, 58(7): 4500-4505. doi: 10.7498/aps.58.4500
    [14] 陈时东, 朱留华, 孔令江, 刘慕仁. 优先随机慢化及预测间距对交通流的影响. 物理学报, 2007, 56(5): 2517-2522. doi: 10.7498/aps.56.2517
    [15] 牟勇飚, 钟诚文. 基于安全驾驶的元胞自动机交通流模型. 物理学报, 2005, 54(12): 5597-5601. doi: 10.7498/aps.54.5597
    [16] 葛红霞, 祝会兵, 戴世强. 智能交通系统的元胞自动机交通流模型. 物理学报, 2005, 54(10): 4621-4626. doi: 10.7498/aps.54.4621
    [17] 郑容森, 谭惠丽, 孔令江, 刘慕仁. 双向两车道混合车辆交通流的特性. 物理学报, 2005, 54(10): 4614-4620. doi: 10.7498/aps.54.4614
    [18] 陈燕红, 薛 郁. 随机延迟概率对交通流的影响. 物理学报, 2004, 53(12): 4145-4150. doi: 10.7498/aps.53.4145
    [19] 薛郁. 优化车流的交通流格子模型. 物理学报, 2004, 53(1): 25-30. doi: 10.7498/aps.53.25
    [20] 薛郁, 董力耘, 袁以武, 戴世强. 考虑车辆相对运动速度的交通流演化过程的数值模拟. 物理学报, 2002, 51(3): 492-496. doi: 10.7498/aps.51.492
计量
  • 文章访问数:  4748
  • PDF下载量:  659
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-20
  • 修回日期:  2013-05-02
  • 刊出日期:  2013-08-05

/

返回文章
返回