搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非对称DBR-金属-DBR结构的光学Tamm态理论研究

蒋瑶 张伟利 朱叶雨

引用本文:
Citation:

非对称DBR-金属-DBR结构的光学Tamm态理论研究

蒋瑶, 张伟利, 朱叶雨

Optical Tamm state theory study on asymmetric DBR-metal-DBR structure

Jiang Yao, Zhang Wei-Li, Zhu Ye-Yu
PDF
导出引用
  • 作为一种特殊的金属表面态, 光学Tamm态 (OTS) 对光的控制和操作具有独到优势, 在新一代光子器件设计中备受青睐. 本文基于分布式Bragg反射镜(DBR)-金属-DBR(DMD)结构, 通过金属两侧 DBR中心频率的失配引入不对称机制, 设计和控制可见光区域OTS的产生; 通过分析反射谱及电场分布特性, 揭示了金属两侧OTS的相互作用及变化规律. 结果表明: DMD结构可支持两个不同本征波长OTS 存在, 失配量将影响两个OTS的强度及本征波长, 即随着变化OTS 出现上下两个分支; 同时, 入射光的偏振态、入射角等也对OTS的强度及本征波长具有明显影响.
    As a special metal surface state, optical Tamm state (OTS) has been widely used in designing the new generation of optical devices for its unique advantages in light control and operation. Based on distribute Bragg reflector (DBR)-metal-DBR (DMD)structure, asymmetric mechanism is introduced by mismatching central frequencies of the two DBRs to design and control the generation of OTS. Through the analysis of reflection spectrum and the electric field distribution characteristics, the interaction and variation rules of OTS on each side of metal are revealed. The results indicate that the DMD structure can support the presence of two OTSs with different intrinsic wavelengths. Besides, the mismatch will affect the strengths and intrinsic wavelengths of the two OTSs, i.e., the upper and lower branches of OTS appear with the variation of . In addition, polarization state and injection angle of incident light have a considerable influence on the strength and intrinsic wavelength of OTS.
    • 基金项目: 国家自然科学基金 (批准号: 61106045, 61290312, 61205048);中央高校基本科研业务费(批准号: ZYGX2011J001)和教育部长江学者和创新团队发展计划资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61106045, 61290312, 61205048), the Fundamental Research Fund for the Central Universities, China (Grant No. ZYGX2011J001), and the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China.
    [1]

    Polo Jr J A, Lakhtakia A 2011 Laser Photon. Rev. 5 234

    [2]

    Chen Y, Ming H 2012 Photon. Sensors 2 37

    [3]

    Jing Q L, Du C G, Gao J C 2013 Acta Phys. Sin. 62 037302 (in Chinese) [荆庆丽, 杜春光, 高健存 2013 物理学报 62 037302]

    [4]

    Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V, Shelykh I A 2007 Phys. Rev. B 76 165415

    [5]

    Symonds C, Lemaitre A, Homeyer E, Plenet J C, Bellessa J 2009 Appl. Phys. Lett. 95 151114

    [6]

    Liew T C H, Kavokin A V, Ostatnicky T, Kaliteevski M, Shelykh I A, Abram R A 2010 Phys. Rev. B 82 033302

    [7]

    Zhang W L, Rao Y J 2012 Chin. Phys. B 21 057107

    [8]

    Guo J Y, Sun Y, Zhang Y W, Li H Q, Jiang H T, Chen H 2008 Phys. Rev. E 78 026607

    [9]

    Chen Z F, Han P, Leung C W, Wang Y, Hu M Z, Chen Y H 2012 Opt. Express 20 21618

    [10]

    Sasin M E, Seisyan R P, Kalitteevski M A, Brand S, Abram R A, Chamberlain J M, Egorov A Y, Vasil’ev A P, Mikhrin V S, Kavokin A V 2008 Appl. Phys. Lett. 92 251112

    [11]

    Zhou H C 2012 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [周海春 2012 博士学位论文 (武汉: 华中科技大学)]

    [12]

    Brckner R, Sudzius M, Hintschich S I, Fröb H, Lyssenko V G, Kaliteevski M A, Iorsh I, Abram R A, Kavokin A V, Leo K 2012 Appl. Phys. Lett. 100 062101

    [13]

    Pitarke J M, Silkin V M, Chulkov E V, Echenique P M 2007 Rep. Prog. Phys. 70 1

    [14]

    Rakic A D, Djurišic A B, Elazar J M, Majewski M L 1998 Appl. Opt. 37 5271

    [15]

    Zhang W L, Yu S F 2010 Opt. Commun. 283 2622

  • [1]

    Polo Jr J A, Lakhtakia A 2011 Laser Photon. Rev. 5 234

    [2]

    Chen Y, Ming H 2012 Photon. Sensors 2 37

    [3]

    Jing Q L, Du C G, Gao J C 2013 Acta Phys. Sin. 62 037302 (in Chinese) [荆庆丽, 杜春光, 高健存 2013 物理学报 62 037302]

    [4]

    Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V, Shelykh I A 2007 Phys. Rev. B 76 165415

    [5]

    Symonds C, Lemaitre A, Homeyer E, Plenet J C, Bellessa J 2009 Appl. Phys. Lett. 95 151114

    [6]

    Liew T C H, Kavokin A V, Ostatnicky T, Kaliteevski M, Shelykh I A, Abram R A 2010 Phys. Rev. B 82 033302

    [7]

    Zhang W L, Rao Y J 2012 Chin. Phys. B 21 057107

    [8]

    Guo J Y, Sun Y, Zhang Y W, Li H Q, Jiang H T, Chen H 2008 Phys. Rev. E 78 026607

    [9]

    Chen Z F, Han P, Leung C W, Wang Y, Hu M Z, Chen Y H 2012 Opt. Express 20 21618

    [10]

    Sasin M E, Seisyan R P, Kalitteevski M A, Brand S, Abram R A, Chamberlain J M, Egorov A Y, Vasil’ev A P, Mikhrin V S, Kavokin A V 2008 Appl. Phys. Lett. 92 251112

    [11]

    Zhou H C 2012 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [周海春 2012 博士学位论文 (武汉: 华中科技大学)]

    [12]

    Brckner R, Sudzius M, Hintschich S I, Fröb H, Lyssenko V G, Kaliteevski M A, Iorsh I, Abram R A, Kavokin A V, Leo K 2012 Appl. Phys. Lett. 100 062101

    [13]

    Pitarke J M, Silkin V M, Chulkov E V, Echenique P M 2007 Rep. Prog. Phys. 70 1

    [14]

    Rakic A D, Djurišic A B, Elazar J M, Majewski M L 1998 Appl. Opt. 37 5271

    [15]

    Zhang W L, Yu S F 2010 Opt. Commun. 283 2622

  • [1] 王玥, 王豪杰, 崔子健, 张达篪. 双谐振环金属超表面中的连续域束缚态. 物理学报, 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [2] 刘力硕, 陈伟. 自旋简并节线半金属中表面态诱导的自旋相关散射. 物理学报, 2023, 72(17): 177202. doi: 10.7498/aps.72.20230811
    [3] 郭晓蒙, 青芳竹, 李雪松. 石墨烯在金属表面防腐中的应用. 物理学报, 2021, 70(9): 098102. doi: 10.7498/aps.70.20210349
    [4] 张若羽, 李培丽, 高辉. 基于光学tamm态的声光开关的研究. 物理学报, 2020, 69(16): 164204. doi: 10.7498/aps.69.20200396
    [5] 陈文杰, 江俊峰, 刘琨, 王双, 马喆, 张晚琛, 刘铁根. 基于相干光时域反射型的光纤分布式声增敏传感研究. 物理学报, 2017, 66(7): 070706. doi: 10.7498/aps.66.070706
    [6] 武执政, 余坤, 郭志伟, 李云辉, 江海涛. 类特异材料半导体复合结构中的电子Tamm态. 物理学报, 2015, 64(10): 107302. doi: 10.7498/aps.64.107302
    [7] 张振清, 路海, 王少华, 魏泽勇, 江海涛, 李云辉. 平面金属等离激元美特材料对光学Tamm态及相关激射行为的增强作用. 物理学报, 2015, 64(11): 114202. doi: 10.7498/aps.64.114202
    [8] 丁晶新, 方银飞, 郭超修, 杨岚, 夏勇, 尹亚玲, 印建平. 基于表面等离激元场的分子反射镜的理论研究. 物理学报, 2014, 63(21): 213701. doi: 10.7498/aps.63.213701
    [9] 陈颖, 范卉青, 卢波. 带多孔硅表面缺陷腔的半无限光子晶体Tamm态及其折射率传感机理. 物理学报, 2014, 63(24): 244207. doi: 10.7498/aps.63.244207
    [10] 余海军, 钟国宝, 马建国, 任刚. 量子光学态的Ridgelet变换. 物理学报, 2013, 62(14): 144203. doi: 10.7498/aps.62.144203
    [11] 陈应天, 何祚庥. 用于轴对称的两级光学聚光器的非成像二次反射镜. 物理学报, 2013, 62(13): 134209. doi: 10.7498/aps.62.134209
    [12] 王裴, 邵建立, 秦承森. 沟槽角度对金属表面微射流性质的影响. 物理学报, 2012, 61(23): 234701. doi: 10.7498/aps.61.234701
    [13] 马成举, 任立勇, 唐峰, 屈恩世, 徐金涛, 梁权, 王舰, 韩旭. 基于分布式光纤Bragg光栅传感技术的光缆卷盘静态压力研究. 物理学报, 2012, 61(5): 054702. doi: 10.7498/aps.61.054702
    [14] 李志成, 刘斌, 张荣, 张曌, 陶涛, 谢自力, 陈鹏, 江若琏, 郑有炓, 姬小利. 紫外波段SiO2/Si3N4介质膜分布式布拉格反射镜的制备与研究. 物理学报, 2012, 61(8): 087802. doi: 10.7498/aps.61.087802
    [15] 汤益丹, 沈光地, 郭霞, 关宝璐, 蒋文静, 韩金茹. 带介质分布式Bragg反射镜结构高性能共振腔发光二极管的研究. 物理学报, 2012, 61(1): 018503. doi: 10.7498/aps.61.018503
    [16] 吕 明, 徐少辉, 张松涛, 何 钧, 熊祖洪, 邓振波, 丁训民. 基于多孔硅分布Bragg反射镜的有机微腔的光学性质. 物理学报, 2000, 49(10): 2083-2088. doi: 10.7498/aps.49.2083
    [17] 王炎森, 潘立民, 黄发泱, 方渡飞, 汤家镛, 杨福家. 铯离子/原子与金属表面电荷交换的计算. 物理学报, 1994, 43(12): 1950-1956. doi: 10.7498/aps.43.1950
    [18] 谢剑钧, 张涛, 路文昌. 氢在担载金属表面的吸附研究. 物理学报, 1993, 42(11): 1815-1821. doi: 10.7498/aps.42.1815
    [19] 冯伟国, 孙鑫, 吴家玮. 氢原子在金属表面的吸附理论. 物理学报, 1988, 37(8): 1298-1306. doi: 10.7498/aps.37.1298
    [20] 方励之. 金属表面反射光中的谐波. 物理学报, 1964, 20(8): 817-818. doi: 10.7498/aps.20.817
计量
  • 文章访问数:  6856
  • PDF下载量:  695
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-17
  • 修回日期:  2013-05-16
  • 刊出日期:  2013-08-05

/

返回文章
返回