搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沸石类咪唑骨架材料吸附分离天然气的分子模拟

郭海超 施帆 马正飞 周之雯 周怡然

引用本文:
Citation:

沸石类咪唑骨架材料吸附分离天然气的分子模拟

郭海超, 施帆, 马正飞, 周之雯, 周怡然

Molecular simulations of adsorption and separation of natural gas on zeolitic imidazolate frameworks

Guo Hai-Chao, Shi Fan, Ma Zheng-Fei, Zhou Zhi-Wen, Zhou Yi-Ran
PDF
导出引用
  • 采用巨正则蒙特卡洛方法研究C2H6, CO2和CH4三种气体在两种沸石类咪唑骨架材料 (ZIF)-ZIF-2和ZIF-71中的吸附与分离性能. 考察了C2H6, CO2和CH4三种气体在ZIF-2和ZIF-71中的单组分吸附等温线、吸附热; C2H6-CH4, CO2-CH4 与C2H6-CO2等摩尔二元混合物的分离; 以及C2H6-CO2-CH4三元体系的分离性能. 研究结果表明: 低压下不同气体的吸附量大小与其吸附热关系紧密; 而高压下因有限的孔空间, 尺寸较小的气体分子吸附量增长趋向更快; 多组分吸附分离中, 低压下能量效应通常占据主导, ZIF优先吸附作用力较强的组分; 高压下堆积效应影响显著, ZIF会优先吸附尺寸较小的组分. ZIF-2和ZIF-71对这3种二元体系的分离性能良好. 对于三元混合物吸附分离, 在常温下3000-4000kPa范围内, ZIF-2具有良好的天然气净化性能, 可有效地分离出天然气中的C2H6和CO2.
    Grand canonical Monte Carlo simulations were employed to investigate the adsorption and separation of C2H6, CO2 and CH4 on two zeolitic imidazolate frameworks (ZIF-2 and ZIF-71). The adsorption isotherm and isosteric heat of pure gas, the separation performance of C2H6-CH4, CO2-CH4 and C2H6-CO2 binary mixtures and C2H6-CO2-CH4 ternary mixtures on two ZIFs were simulated and discussed. For single component gas adsorption at a low pressure, the adsorption amount depended on isosteric heat; at a high pressure, due to the limited pore volume, ZIFs preferably adsorbed smaller size gas molecules. For gas mixture separation, energetic effect dominated at low pressure, therefore, ZIFs selectively adsorbed gas component with strong interactions; packing effect usually played an important role at high pressures, consequently, smaller size component would be more entropically favorable. Results demonstrated that both ZIF-2 and ZIF-71 were of good separation performance for these three binary mixtures. For the ternary mixture separation, it was found that ZIF-2 cowld effectively separate C2H6 and CO2 from CH4 at 3000-4000 kPa and room temperature.
    [1]

    U.S. Energy Policy Act of 1992 (EPAct)

    [2]

    Xiao J T 1997 Chem. Eng. Oil Gas 2 94 (in Chinese) [肖锦堂 1997 石油与天然气化工 2 94]

    [3]

    Burchell T, Rogers M 2000 SAE Tech. Pa. Ser. 2000-01-2205

    [4]

    Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi O M 2008 Science 319 939

    [5]

    Wang B, Cote A P, Furukawa H, O’Keeffe M, Yaghi O M 2008 Nature 453 207

    [6]

    Park K S, Ni Z, Cote A P, Choi J Y, Huang R D, Uribe-Romo F J, Chae H K, O’Keeffe M, Yaghi O M 2006 Proc. Nat. Acad. Sci. U.S.A. 103 10186

    [7]

    Phan A, Doonan C J, Uribe-Romo F J, Knobler C B, O’Keeffe M, Yaghi O M 2010 Acc. Chem. Res. 43 58

    [8]

    Liu X Y, Li X F, Zhang L Y, Fan Z Q, Ma X K 2012 Acta Phys. Sin. 61 146802-1 (in Chinese) [刘秀英, 李晓凤, 张丽英, 樊志琴, 马兴科 2012 物理学报 61 146802-1]

    [9]

    Liu X Y, Wang C Y, Tang Y J, Sun W G, Wu W D, Zhang H Q, Liu M, Yuan L, Xu J J 2009 Acta Phys. Sin. 58 1126 (in Chinese) [刘秀英, 王朝阳, 唐永建, 孙卫国, 吴卫东, 张厚琼, 刘淼, 袁磊, 徐嘉靖 2009 物理学报 58 1126]

    [10]

    Li W L, Zhang J P, Guo H C, Gahungu G 2011 J. Phys. Chem. C 115 4935

    [11]

    Dai W, Luo J S, Tang Y J, Wang C Y, Chen S J, Sun W G 2009 Acta Phys. Sin. 58 1890 (in Chinese) [戴伟, 罗江山, 唐永建, 王朝阳, 陈善俊, 孙卫国 2009 物理学报 58 1890]

    [12]

    Dai W, Xiao M, Li Z H, Tang Y J 2012 Acta Phys. Sin. 61 016801 (in Chinese) [戴伟, 肖明, 李志浩, 唐永建 2012 物理学报 61 016801]

    [13]

    Keskin S 2011 J. Phys. Chem. C 115 800

    [14]

    Liu B, Smit B 2010 J. Phys. Chem. C 114 8515

    [15]

    Battisti A, Taioli S, Garberoglio G 2011 Micropor. Mesopor. Mater. 143 46

    [16]

    Yang Q Y, Zhong C L 2006 J. Phys. Chem. B 110 17776

    [17]

    Jiang J W, Sandler S I 2006 Langmuir 22 5702

    [18]

    Babarao R, Tong Y H, Jiang J W 2009 J. Phys. Chem. B 113 9129

    [19]

    Martin M G, Siepmann J I 1998 J. Phys. Chem. B 102 2569

    [20]

    Potoff J J, Siepmann J I 2001 AIChE J. 47 1676

    [21]

    Rappe A K, Casewit C J, Colwell K S, Goddard W A, Skiff W M 1992 J. Am. Chem. Soc. 114 10024

    [22]

    Atci E, Keskin S 2012 Ind. Eng. Chem. Res. 51 3091

    [23]

    Guo H C, Shi F, Ma Z F, Liu X Q 2010 J. Phys. Chem. C 114 12158

    [24]

    Liu D H, Zheng C C, Yang Q Y, Zhong C L 2009 J. Phys. Chem. C 113 5004

    [25]

    Sirjoosingh A, Alavi S, Woo T K 2010 J. Phys. Chem. C 114 2171

    [26]

    Gupta A, Chempath S, Sanborn M J, Clark L A, Snurr R Q 2003 Mol. Simul. 29 29

    [27]

    Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785

    [28]

    Dill J D, Pople J A 1975 J. Chem. Phys. 62 2921

    [29]

    Francl M M, Pietro W J, Hehre W J, Binkley J S, Gordon M S, DeFrees D J, Pople J A 1982 J. Chem. Phys. 77 3654

    [30]

    Hay P J, Wadt W R 1982 J. Chem. Phys. 82 299

    [31]

    Hay P J, Wadt W R 1982 J. Chem. Phys. 82 270

    [32]

    Wadt W R, Hay P J 1982 J. Chem. Phys. 82 284

    [33]

    Breneman C M, Wiberg K B 1990 J. Comput. Chem. 11 361

    [34]

    Snurr R Q, Bell A T, Theodorou D N 1993 J. Phys. Chem. 97 13742

    [35]

    Duren T, Millange F, Ferey G, Walton K S, Snurr R Q 2007 J. Phys. Chem. C 111 15350

    [36]

    Morris W, Leung B, Furukawa H, Yaghi O K, He N, Hayashi H, Houndonougbo Y, Asta M, Laird B B, Yaghi O M 2010 J. Am. Chem. Soc. 132 11006

    [37]

    Frost H, Duren T, Snurr R Q 2006 J. Phys. Chem. B 110 9565

    [38]

    Gallo M, Glossman-Mitnik D 2009 J. Phys. Chem. C 113 6634

    [39]

    Keffer D, Davis H T, McCormick A V 1996 J. Phys. Chem. 100 638

    [40]

    He Y, Zhang Z, Xiang S, Wu H, Fronczek F R, Zhou W, Krishna R, O’Keeffe M, Chen B 2012 Chem. Eur. J. 18 1901

    [41]

    Pereira P R, Pires J, de Carvalho M B 2001 Sep. Purif. Technol. 21 237

    [42]

    Magnowski N B K, Avila A M, Lin C C H, Shi M, Kuznicki S M 2011 Chem. Eng. Sci. 66 1697

    [43]

    Martin-Calvo A, Garcia-Perez E, Castillo J M, Calero S 2008 Phys. Chem. Chem. Phys. 10 7085

    [44]

    Yang Q Y, Zhong C L 2006 Chem. Phys. Chem. 7 1417

    [45]

    Bastin L, Barcia P S, Hurtado E J, Silva J A C, Rodrigues A E, Chen B L 2008 J. Phys. Chem. C 112 1575

    [46]

    Babarao R, Jiang J W 2009 Energy Environ. Sci. 2 1088

    [47]

    Bae Y S, Farha O K, Spokoyny A M, Mirkin C A, Hupp J T, Snurr R Q 2008 Chem. Commun. 4135

    [48]

    Pires J, Bestilleiro M, Pinto M, Gil A 2008 Sep. Purif. Technol. 61 161

  • [1]

    U.S. Energy Policy Act of 1992 (EPAct)

    [2]

    Xiao J T 1997 Chem. Eng. Oil Gas 2 94 (in Chinese) [肖锦堂 1997 石油与天然气化工 2 94]

    [3]

    Burchell T, Rogers M 2000 SAE Tech. Pa. Ser. 2000-01-2205

    [4]

    Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi O M 2008 Science 319 939

    [5]

    Wang B, Cote A P, Furukawa H, O’Keeffe M, Yaghi O M 2008 Nature 453 207

    [6]

    Park K S, Ni Z, Cote A P, Choi J Y, Huang R D, Uribe-Romo F J, Chae H K, O’Keeffe M, Yaghi O M 2006 Proc. Nat. Acad. Sci. U.S.A. 103 10186

    [7]

    Phan A, Doonan C J, Uribe-Romo F J, Knobler C B, O’Keeffe M, Yaghi O M 2010 Acc. Chem. Res. 43 58

    [8]

    Liu X Y, Li X F, Zhang L Y, Fan Z Q, Ma X K 2012 Acta Phys. Sin. 61 146802-1 (in Chinese) [刘秀英, 李晓凤, 张丽英, 樊志琴, 马兴科 2012 物理学报 61 146802-1]

    [9]

    Liu X Y, Wang C Y, Tang Y J, Sun W G, Wu W D, Zhang H Q, Liu M, Yuan L, Xu J J 2009 Acta Phys. Sin. 58 1126 (in Chinese) [刘秀英, 王朝阳, 唐永建, 孙卫国, 吴卫东, 张厚琼, 刘淼, 袁磊, 徐嘉靖 2009 物理学报 58 1126]

    [10]

    Li W L, Zhang J P, Guo H C, Gahungu G 2011 J. Phys. Chem. C 115 4935

    [11]

    Dai W, Luo J S, Tang Y J, Wang C Y, Chen S J, Sun W G 2009 Acta Phys. Sin. 58 1890 (in Chinese) [戴伟, 罗江山, 唐永建, 王朝阳, 陈善俊, 孙卫国 2009 物理学报 58 1890]

    [12]

    Dai W, Xiao M, Li Z H, Tang Y J 2012 Acta Phys. Sin. 61 016801 (in Chinese) [戴伟, 肖明, 李志浩, 唐永建 2012 物理学报 61 016801]

    [13]

    Keskin S 2011 J. Phys. Chem. C 115 800

    [14]

    Liu B, Smit B 2010 J. Phys. Chem. C 114 8515

    [15]

    Battisti A, Taioli S, Garberoglio G 2011 Micropor. Mesopor. Mater. 143 46

    [16]

    Yang Q Y, Zhong C L 2006 J. Phys. Chem. B 110 17776

    [17]

    Jiang J W, Sandler S I 2006 Langmuir 22 5702

    [18]

    Babarao R, Tong Y H, Jiang J W 2009 J. Phys. Chem. B 113 9129

    [19]

    Martin M G, Siepmann J I 1998 J. Phys. Chem. B 102 2569

    [20]

    Potoff J J, Siepmann J I 2001 AIChE J. 47 1676

    [21]

    Rappe A K, Casewit C J, Colwell K S, Goddard W A, Skiff W M 1992 J. Am. Chem. Soc. 114 10024

    [22]

    Atci E, Keskin S 2012 Ind. Eng. Chem. Res. 51 3091

    [23]

    Guo H C, Shi F, Ma Z F, Liu X Q 2010 J. Phys. Chem. C 114 12158

    [24]

    Liu D H, Zheng C C, Yang Q Y, Zhong C L 2009 J. Phys. Chem. C 113 5004

    [25]

    Sirjoosingh A, Alavi S, Woo T K 2010 J. Phys. Chem. C 114 2171

    [26]

    Gupta A, Chempath S, Sanborn M J, Clark L A, Snurr R Q 2003 Mol. Simul. 29 29

    [27]

    Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785

    [28]

    Dill J D, Pople J A 1975 J. Chem. Phys. 62 2921

    [29]

    Francl M M, Pietro W J, Hehre W J, Binkley J S, Gordon M S, DeFrees D J, Pople J A 1982 J. Chem. Phys. 77 3654

    [30]

    Hay P J, Wadt W R 1982 J. Chem. Phys. 82 299

    [31]

    Hay P J, Wadt W R 1982 J. Chem. Phys. 82 270

    [32]

    Wadt W R, Hay P J 1982 J. Chem. Phys. 82 284

    [33]

    Breneman C M, Wiberg K B 1990 J. Comput. Chem. 11 361

    [34]

    Snurr R Q, Bell A T, Theodorou D N 1993 J. Phys. Chem. 97 13742

    [35]

    Duren T, Millange F, Ferey G, Walton K S, Snurr R Q 2007 J. Phys. Chem. C 111 15350

    [36]

    Morris W, Leung B, Furukawa H, Yaghi O K, He N, Hayashi H, Houndonougbo Y, Asta M, Laird B B, Yaghi O M 2010 J. Am. Chem. Soc. 132 11006

    [37]

    Frost H, Duren T, Snurr R Q 2006 J. Phys. Chem. B 110 9565

    [38]

    Gallo M, Glossman-Mitnik D 2009 J. Phys. Chem. C 113 6634

    [39]

    Keffer D, Davis H T, McCormick A V 1996 J. Phys. Chem. 100 638

    [40]

    He Y, Zhang Z, Xiang S, Wu H, Fronczek F R, Zhou W, Krishna R, O’Keeffe M, Chen B 2012 Chem. Eur. J. 18 1901

    [41]

    Pereira P R, Pires J, de Carvalho M B 2001 Sep. Purif. Technol. 21 237

    [42]

    Magnowski N B K, Avila A M, Lin C C H, Shi M, Kuznicki S M 2011 Chem. Eng. Sci. 66 1697

    [43]

    Martin-Calvo A, Garcia-Perez E, Castillo J M, Calero S 2008 Phys. Chem. Chem. Phys. 10 7085

    [44]

    Yang Q Y, Zhong C L 2006 Chem. Phys. Chem. 7 1417

    [45]

    Bastin L, Barcia P S, Hurtado E J, Silva J A C, Rodrigues A E, Chen B L 2008 J. Phys. Chem. C 112 1575

    [46]

    Babarao R, Jiang J W 2009 Energy Environ. Sci. 2 1088

    [47]

    Bae Y S, Farha O K, Spokoyny A M, Mirkin C A, Hupp J T, Snurr R Q 2008 Chem. Commun. 4135

    [48]

    Pires J, Bestilleiro M, Pinto M, Gil A 2008 Sep. Purif. Technol. 61 161

  • [1] 孙辉, 刘婧楠, 章立新, 杨其国, 高明. 超临界CO2类液-类气区边界线数值分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211464
    [2] 袁俊鹏, 刘秀英, 李晓东, 于景新. 沸石分子筛对CH4/H2的吸附与分离性能. 物理学报, 2021, 70(15): 156801. doi: 10.7498/aps.70.20210101
    [3] 王圣业, 王光学, 董义道, 邓小刚. 基于雷诺应力模型的高精度分离涡模拟方法. 物理学报, 2017, 66(18): 184701. doi: 10.7498/aps.66.184701
    [4] 刘海军, 田晓波, 李清江, 孙兆林, 刁节涛. 基于蒙特卡洛方法的钛氧化物忆阻器辐射损伤研究. 物理学报, 2015, 64(7): 078401. doi: 10.7498/aps.64.078401
    [5] 张克声, 陈刘奎, 欧卫华, 蒋学勤, 龙飞. 基于声吸收谱峰值点的天然气燃烧特性检测理论. 物理学报, 2015, 64(5): 054302. doi: 10.7498/aps.64.054302
    [6] 阮聪, 孙晓民, 宋亦旭. 元胞方法与蒙特卡洛方法相结合的薄膜生长过程模拟. 物理学报, 2015, 64(3): 038201. doi: 10.7498/aps.64.038201
    [7] 王晓晗, 郭红霞, 雷志锋, 郭刚, 张科营, 高丽娟, 张战刚. 基于蒙特卡洛和器件仿真的单粒子翻转计算方法. 物理学报, 2014, 63(19): 196102. doi: 10.7498/aps.63.196102
    [8] 郑晖, 张崇宏, 孙博, 杨义涛, 白彬, 宋银, 赖新春. 小体积比两相分离早期过程的三维格子气模型研究. 物理学报, 2013, 62(15): 156401. doi: 10.7498/aps.62.156401
    [9] 张帅, 刘文清, 张玉钧, 阮俊, 阚瑞峰, 尤坤, 于殿强, 董金婷, 韩小磊. 基于激光吸收光谱技术天然气管道泄漏定量遥测方法的研究. 物理学报, 2012, 61(5): 050701. doi: 10.7498/aps.61.050701
    [10] 周先春, 林万涛, 林一骅, 姚静荪, 莫嘉琪. 一类扰动洛伦兹系统的解法. 物理学报, 2011, 60(11): 110207. doi: 10.7498/aps.60.110207
    [11] 赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳. 不同振动模式下颗粒分离行为的数值模拟. 物理学报, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [12] 李彦敏, 梅凤翔. 一类广义Birkhoff系统的广义正则变换. 物理学报, 2010, 59(8): 5219-5222. doi: 10.7498/aps.59.5219
    [13] 颜克凤, 李小森, 陈朝阳, 徐纯钢. 整体煤气化联合循环合成气水合物法分离CO2的分子动力学模拟. 物理学报, 2010, 59(6): 4313-4321. doi: 10.7498/aps.59.4313
    [14] 王冬一, 薛春瑜, 仲崇立. 金属-有机骨架材料二聚铜-苯-1,3,5-三羧酸酯中烷烃扩散机理的分子模拟研究. 物理学报, 2009, 58(8): 5552-5559. doi: 10.7498/aps.58.5552
    [15] 戴伟, 罗江山, 唐永建, 王朝阳, 陈善俊, 孙卫国. 氢气分子在沸石中的吸附模拟研究. 物理学报, 2009, 58(3): 1890-1895. doi: 10.7498/aps.58.1890
    [16] 王志军, 董丽芳, 尚 勇. 电子助进化学气相沉积金刚石中发射光谱的蒙特卡罗模拟. 物理学报, 2005, 54(2): 880-885. doi: 10.7498/aps.54.880
    [17] 郭红霞, 陈雨生, 张义门, 吴国荣, 周辉, 关颖, 韩福斌, 龚建成. 多层平板电离室测量不同材料界面剂量分布及其蒙特-卡洛模拟. 物理学报, 2001, 50(8): 1545-1548. doi: 10.7498/aps.50.1545
    [18] 吴詠华, 李惠祥, 王大志, 张道元. 热处理Sn4+阳离子交换天然沸石的研究. 物理学报, 1992, 41(7): 1208-1212. doi: 10.7498/aps.41.1208
    [19] 王大志, 袁望治, 俞文海. 丝光沸石的电导性能研究. 物理学报, 1989, 38(5): 800-806. doi: 10.7498/aps.38.800
    [20] 王大志, 袁望治, 周贵恩, 林碧霞. 丝光沸石的高温相变. 物理学报, 1987, 36(2): 254-258. doi: 10.7498/aps.36.254
计量
  • 文章访问数:  4599
  • PDF下载量:  396
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-08
  • 修回日期:  2013-05-09
  • 刊出日期:  2013-09-05

/

返回文章
返回