搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外电场中金属表面附近里德堡氢原子的动力学行为

李洪云 岳大光 梁志强 伊长虹 陈建中

引用本文:
Citation:

外电场中金属表面附近里德堡氢原子的动力学行为

李洪云, 岳大光, 梁志强, 伊长虹, 陈建中

Dynamical properties of Rydberg hydrogen atom interacting with a metal surface and an electric field

Li Hong-Yun, Yue Da-Guang, Liang Zhi-Qiang, Yi Chang-Hong, Chen Jian-Zhong
PDF
导出引用
  • 利用相空间分析方法研究了外电场中金属表面附近里德堡氢原子的动力学性质. 结果表明, 体系的动力学性质敏感地依赖于原子与金属表面间的距离和电场强度.通过固定原子与金属表面间的距离, 分析了外加电场作用下里德堡电子的Poincar 截面和运动轨迹的演化过程. 研究表明: 电场的出现加速了金属表面对电子的吸附, 随着电场强度的增加,体系的动力学性质由原子与金 属表面间的距离控制逐渐变为由电场起主导作用,体系逐渐由不可积变为可积, 电子的运动轨道最终全部变为振动型轨道.
    The dynamical properties of Rydberg hydrogen atom in an electric field near a metal surface are presented by analyzing the phase space. The dynamical behavior of the excited hydrogen atom depends sensitively on the atom-surface distance and the electric field strength. The evolutions of the Poincar surface of section and the electric orbit are analyzed for a certain atom-surface distance and different electric field strengths. The results indicate that the electric field accelerates the adsorption of electron. With the increase of the electric field strength, the controlling factor of dynamical behavior changes from the atom-surface distance to the electric field strength. As the electric field strength becomes very large, the system is integrable and all the electric orbits become vibrational type of orbits.
    • 基金项目: 国家自然科学基金(批准号:10774093)和山东交通学院博士基金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10774093) and the Doctor Foundation of Shandong Jiaotong University, China.
    [1]

    Landragin A, Courtois J Y, Labeyrie G, Vansteenkiste N, Westbrook C, Aspect A 1996 Phys. Rev. Lett. 77 1464

    [2]

    Iñarrea M, Salas J P, Lanchares V 2002 Phys. Rev. E 66 056614

    [3]

    Wang D H 2007 Chin. Phys. 16 692

    [4]

    Yang H F, Wang L, Liu X J, Liu H P 2011 Chin. Phys. B 20 063203

    [5]

    Tang T T, Wang D H, Huang K Y, Wang S S 2011 Chin. Phys. B 20 063205

    [6]

    Wang D H, Huang K Y 2010 Chin. Phys. B 19 063402

    [7]

    Salas J P, Simonovic N S 2000 J. Phys. B 33 291

    [8]

    Ganesan K, Taylor K 1996 J. Phys. B 29 1293

    [9]

    Salas J P, Deprit A, Ferrer S, Lanchares V, Palacián J 1998 Phys. Lett. A 242 83

    [10]

    Nordlander P, Dunning F B 1996 Phys. Rev. B 53 8083

    [11]

    Nedeljkovi N N, Nedeljkovi L D 2005 Phys. Rev. A 72 032901

    [12]

    Wang D H, Wu A L 2008 J. Electron Spec. Rel. Phen. 165 36

    [13]

    Simonovic N S 1997 J. Phys. B 30 L613

    [14]

    Gao J, Delos J B 1992 Phys. Rev. A 46 1455

    [15]

    Liu W, Li H Y, Yang S Y, Lin S L 2011 Chin. Phys. B 20 033401

  • [1]

    Landragin A, Courtois J Y, Labeyrie G, Vansteenkiste N, Westbrook C, Aspect A 1996 Phys. Rev. Lett. 77 1464

    [2]

    Iñarrea M, Salas J P, Lanchares V 2002 Phys. Rev. E 66 056614

    [3]

    Wang D H 2007 Chin. Phys. 16 692

    [4]

    Yang H F, Wang L, Liu X J, Liu H P 2011 Chin. Phys. B 20 063203

    [5]

    Tang T T, Wang D H, Huang K Y, Wang S S 2011 Chin. Phys. B 20 063205

    [6]

    Wang D H, Huang K Y 2010 Chin. Phys. B 19 063402

    [7]

    Salas J P, Simonovic N S 2000 J. Phys. B 33 291

    [8]

    Ganesan K, Taylor K 1996 J. Phys. B 29 1293

    [9]

    Salas J P, Deprit A, Ferrer S, Lanchares V, Palacián J 1998 Phys. Lett. A 242 83

    [10]

    Nordlander P, Dunning F B 1996 Phys. Rev. B 53 8083

    [11]

    Nedeljkovi N N, Nedeljkovi L D 2005 Phys. Rev. A 72 032901

    [12]

    Wang D H, Wu A L 2008 J. Electron Spec. Rel. Phen. 165 36

    [13]

    Simonovic N S 1997 J. Phys. B 30 L613

    [14]

    Gao J, Delos J B 1992 Phys. Rev. A 46 1455

    [15]

    Liu W, Li H Y, Yang S Y, Lin S L 2011 Chin. Phys. B 20 033401

计量
  • 文章访问数:  4963
  • PDF下载量:  580
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-24
  • 修回日期:  2013-06-27
  • 刊出日期:  2013-10-05

/

返回文章
返回