搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阶梯槽交错双栅慢波结构高频特性理论和模拟

谢文球 王自成 罗积润 刘青伦 李现霞

引用本文:
Citation:

阶梯槽交错双栅慢波结构高频特性理论和模拟

谢文球, 王自成, 罗积润, 刘青伦, 李现霞

Theory and simulations of high frequency characteristics for a staggered double-grating slow-wave structure with step-shaped grooves

Xie Wen-Qiu, Wang Zi-Cheng, Luo Ji-Run, Liu Qing-Lun, Li Xian-Xia
PDF
导出引用
  • 本文基于一种阶梯槽交错双栅周期慢波结构模型,获得了该结构中的电磁场分布公式. 通过场匹配方法,求出了该结构的高频色散方程和耦合阻抗表达式. 以W波段行波管用的阶梯槽交错双栅为例,利用本文公式和CST-MWS 电磁软件比较计算了色散和耦合阻抗特性,分析了阶梯尺寸参数对高频特性(基模色散、+1 次空间谐波归一化相速和耦合阻抗)的影响. 结果表明,理论和CST-MWS软件模拟有很好的一致性;相对矩形交错双栅,改善了色散特性,拓展了基模带宽,同时具有足够大的耦合阻抗和适合工程应用的机械强度,在一定程度上可以弥补矩形交错双栅周期慢波结构的不足.
    Based on a staggered double-grating slow wave structure with step-shaped grooves, the expressions of the electromagnetic field in it have been obtained and the formulae of the dispersion equation and coupling impedance have been solved by means of field matching method. As an example, a staggered double-grating slow wave structure for W band TWT application was used to calculate the characteristics of dispersion and coupling impedance using the formulae and CST-MWS code, and analyze the effect of the step dimension variation on the high frequency characteristics. Results show that the theoretical calculations are in good agreement with the CST-MWS code simulations, and the slow wave structure can improve the dispersion characteristics, enhance interaction bandwidth, while keeping a proper coupling impedance and mechanical intensity, which can to some extent compensate for the deficiency in the staggered double-grating slow wave structure with the rectangular-shaped grooves.
    • 基金项目: 国家自然科学基金(批准号:61172016)资助的课题.
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 61172016).
    [1]

    Lin Y Y, Huang Y C 2007 Physical Review Special Topics-Accelerators and Beams 10 030701

    [2]

    Shin Y M, Barnett L R 2008 Appl. Phys. Lett. 92 091501

    [3]

    ShinY M, Barnett L R, Luhmann N C 2009 IEEE Trans. Elec. Dev. 56 706

    [4]

    Liu Q L, Wang Z C, Liu P K 2012 Acta Phys. Sin. 61 244102 (in Chinese) [刘青伦, 王自成, 刘濮鲲 2012 物理学报 61 244102]

    [5]

    Lai J Q, Gong Y B, Xu X, Wei Y Y, Duan Z Y, Wang W X, Feng J J 2012 IEEE Trans. Elec. Dev. 59 496

    [6]

    Lai J Q, Wei Y Y, Liu Y, Huang M Z, Tang T, Wang W X, Gong Y B 2012 Chin. Phys. B 21 068403

    [7]

    Liu Q L, Wang Z C, Liu P K, Du C H, Li H Q, Xu A Y 2013 IEEE Trans. Elec. Dev. 60 1463

    [8]

    S. Ramo, J. Whinnery, and T. Van Duzer 1965 Fields and Waves in Communication Electronics(New York: Wiley) p598

    [9]

    Lu Z G, Wei Y Y, Gong Y B, Wang W X 2006 J. Infrared Millim. Waves 25 349 [路志刚, 魏彦玉, 宫玉彬, 王文祥 2006 红外与毫米波学报 25 349]

    [10]

    Wang W X, Guo F Y, Wei Y Y 1997 IEEE Trans. Microw. Theory Tech. 45 1689

    [11]

    Zhang K Q, Li D J 2001 Electromagnetic Theory for Microwaves and Optoelectronics (The second edition) (Beijing: Electronic Industry Press) p411 (in Chinese)[张克潜, 李德杰 2001 微波与光电子学中的电磁理论(第二版)(北京: 电子工业出版社) 第411页]

    [12]

    Liu S G, Li H F, Wang W X, Mo Y L 1985Introduction of Microwave Electronics (Beijing: National Defence Industry Press) p104 (in Chinese) [刘盛纲, 李宏福, 王文祥, 莫元龙 1985 微波电子学导论(北京: 国防工业出版社)第104页]

    [13]

    Li Q Y, Wang N C, Yi D Q 2008 Numerical Analysis (Beijing: Qinghua University Press) p229 (in Chinese) [李庆扬, 王能超, 易大义 2008 数值分析(北京: 清华大学出版社) 第229页]

  • [1]

    Lin Y Y, Huang Y C 2007 Physical Review Special Topics-Accelerators and Beams 10 030701

    [2]

    Shin Y M, Barnett L R 2008 Appl. Phys. Lett. 92 091501

    [3]

    ShinY M, Barnett L R, Luhmann N C 2009 IEEE Trans. Elec. Dev. 56 706

    [4]

    Liu Q L, Wang Z C, Liu P K 2012 Acta Phys. Sin. 61 244102 (in Chinese) [刘青伦, 王自成, 刘濮鲲 2012 物理学报 61 244102]

    [5]

    Lai J Q, Gong Y B, Xu X, Wei Y Y, Duan Z Y, Wang W X, Feng J J 2012 IEEE Trans. Elec. Dev. 59 496

    [6]

    Lai J Q, Wei Y Y, Liu Y, Huang M Z, Tang T, Wang W X, Gong Y B 2012 Chin. Phys. B 21 068403

    [7]

    Liu Q L, Wang Z C, Liu P K, Du C H, Li H Q, Xu A Y 2013 IEEE Trans. Elec. Dev. 60 1463

    [8]

    S. Ramo, J. Whinnery, and T. Van Duzer 1965 Fields and Waves in Communication Electronics(New York: Wiley) p598

    [9]

    Lu Z G, Wei Y Y, Gong Y B, Wang W X 2006 J. Infrared Millim. Waves 25 349 [路志刚, 魏彦玉, 宫玉彬, 王文祥 2006 红外与毫米波学报 25 349]

    [10]

    Wang W X, Guo F Y, Wei Y Y 1997 IEEE Trans. Microw. Theory Tech. 45 1689

    [11]

    Zhang K Q, Li D J 2001 Electromagnetic Theory for Microwaves and Optoelectronics (The second edition) (Beijing: Electronic Industry Press) p411 (in Chinese)[张克潜, 李德杰 2001 微波与光电子学中的电磁理论(第二版)(北京: 电子工业出版社) 第411页]

    [12]

    Liu S G, Li H F, Wang W X, Mo Y L 1985Introduction of Microwave Electronics (Beijing: National Defence Industry Press) p104 (in Chinese) [刘盛纲, 李宏福, 王文祥, 莫元龙 1985 微波电子学导论(北京: 国防工业出版社)第104页]

    [13]

    Li Q Y, Wang N C, Yi D Q 2008 Numerical Analysis (Beijing: Qinghua University Press) p229 (in Chinese) [李庆扬, 王能超, 易大义 2008 数值分析(北京: 清华大学出版社) 第229页]

计量
  • 文章访问数:  4912
  • PDF下载量:  434
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-17
  • 修回日期:  2013-09-13
  • 刊出日期:  2014-01-05

/

返回文章
返回