搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

K0.8Fe2Se2晶体c轴向载流子输运特性的研究

晏潜 陆翠敏 冯电稳 杨巍巍 赵捷 刘庆锁 马永昌

引用本文:
Citation:

K0.8Fe2Se2晶体c轴向载流子输运特性的研究

晏潜, 陆翠敏, 冯电稳, 杨巍巍, 赵捷, 刘庆锁, 马永昌

Investigation of carrier transport properties along the c-axis in K0.8Fe2Se2 superconducting crystals

Yan Qian, Lu Cui-Min, Feng Dian-Wen, Yang Wei-Wei, Zhao Jie, Liu Qing-Suo, Ma Yong-Chang
PDF
导出引用
  • 成功制备了超导临界温度为27 K的K0.8Fe2Se2晶体,并详细研究了晶体c轴向的载流子输运特性. 结合X射线衍射、光学显微镜下的形貌、变温电阻率的测试结果表明,样品存在有“相分离”,但是这类层状铁基超导体材料的两个相不是简单沿c轴向层状交替排布的,而应该是沿着c轴向存在弱联系的金属相链接通路,金属相部分形成近3维的空间网状链接模式. 热导率测试和复阻抗谱z(ω,T0)的研究表明超导晶体沿着c轴方向存在有大量的相界面,所束缚的极化电荷致使相对介电常数达到106数量级,相应地在10 MHz附近出现负的相位特征.
    We have successfully prepared the iron-based superconductor K0.8Fe2Se2 crystals (Tc=27 K) and studied the carrier transport properties along the c-axis in detail. Samples are characterized by XRD, SEM and temperature-dependent resistivity. The result shows that there is “phase separation” in the samples. Based on the experimental results, the iron-based superconductor is not a simple two phases alternating along the c-axis, but the metal phases should have weak-link channels along the c-axis, forming a nearly 3D special net mode. Studies of the thermal conductivity and the complex impedance spectrum z(omega, T0) suggest that the superconducting crystals have a lot of grain boundaries along the c-axis direction, the bound polarization charges result in relative dielectric constant of about 106 in magnitude and negative phase characteristics in the vicinity of 10 MHz.
    • 基金项目: 国家自然科学基金(批准号:10704054)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10704054).
    [1]

    Chen X H 2009 Physics 38 609 (in Chinese) [陈仙辉2009 物理 38 609] Ma T C, Wan Y, Jiang S 2009 Chin. Sci. Bull. 54 557 (in Chinese) [马延灿, 万勇, 姜山 2009 科学通报 54 557]

    [2]

    Stewart G R 2011 Rev. Mod. Phys. 83 1589

    [3]

    Guo J, Jin S, Wang G, Wang S, Zhu K, Zhou T, He M, Chen X 2010 Phys. Rev. B 82 180520

    [4]

    Fang M H, Wang H D, Dong C H, Li Z J, Feng C M, Chen J, Yuan H Q 2011 Europhys. Lett. 94 27009

    [5]

    Yan X W, Gao M, Lu Z Y, Xiang T 2011 Phys. Rev. Lett. 106 087005

    [6]

    Jun Z, Hui B C, Bourret-Courchesne E, Lee D H, and Birgeneau R J 2012 Phys. Rev. Lett. 109 267003

    [7]

    Shermadini Z, Krzton-Maziopa A, Bendele M, Khasanov R, Luetkens H, Conder K, Pomjakushina E, Weyeneth S, Pomjakushin V, Bossen O, Amato A 2011 Phys. Rev. Lett. 106 117602

    [8]

    Wang Z W, Wang Z, Song Y J, Ma C, Cai Y, Chen Z, Tian H F, Yang H X, Chen G F, Li J Q 2012 Phys. Chem. C 116 17847

    [9]

    Yuan R H, Dong T, Song Y J, Zheng P, Chen G F, Hu J P, Li J Q, Wang N L 2012 Sci. Rep. 2 221

    [10]

    Chen F, Xu M, Ge Q Q, Zhang Y, Ye Z R, Yang L X, Jiang J, Xie B P, Che R C, Zhang M, Wang A F, Chen X H, Shen D W, Hu J P, Feng D L 2011 Phys. Rev. X 1 021020

    [11]

    Wang D H, Dong C H, Li Z J, Feng C M, Chen J, Yuan H Q and Fang M H 2011 Europhys. Lett. 93 47004

    [12]

    Liu Z H, Richard P, Xu N, Xu G, Li Y, Fang X C, Jia L L, Chen G F, Wang D M, He J B, Qian T, Hu J P, Ding H, Wang S C 2012 Phys. Rev. Lett. 109 037003

    [13]

    Wang A F, Yan J J, Liu R H, Luo X G, Li Z Y, Wang X F, Zhang M, Ye G J, Cheng P, Xiang Z J, Chen X H 2011 Phys. Rev. B 83 060512

    [14]

    Daniel P S, Duck Y C, Helmut C, Melanie C F, Sevda A, Anna L, Mercouri G K 2012 Phys. Rev. B 86 184511

    [15]

    Ma Y C, Liu J W, Lu H W, Zheng H L 2007 J. Phys.: Condens. Matter 19 186203 Ito T, Takagi H, Ishibashi S, Ido T, Uchida S 1991 Nature 350 596

    [16]

    Texier Y, Deisenhofer J, Tsurkan V, Loidl A, Inosov D S, Friemel G, Bobroff J 2013 Phys. Rev. Lett. 108 237002

    [17]

    Mou D X, Liu S Y, Jia X W, He J F, Peng Y Y, Zhao L, Yu L, Liu G D, He S L, Dong X L, Zhang J, Wang H D, Dong C H, Fang M H, Wang X Y, Peng Q J, Wang Z M, Zhang S J, Yang F, Xu Z Y, Chen C T, Zhou X J 2011 Phys. Rev. Lett. 106 107001

    [18]

    Liu Y, Xing Q, Dennis K W, McCallum R W, Lograsso T A 2012 Phys. Rev. B 86 144507

    [19]

    Charnukha A, Cvitkovic A, Prokscha T, Prö pper D, Ocelic N, Suter A, Salman Z, Morenzoni E, Deisenhofer J, Tsurkan V, Loidl A, Keimer B, Boris A V 2012 Phys. Rev. Lett. 109 017003

  • [1]

    Chen X H 2009 Physics 38 609 (in Chinese) [陈仙辉2009 物理 38 609] Ma T C, Wan Y, Jiang S 2009 Chin. Sci. Bull. 54 557 (in Chinese) [马延灿, 万勇, 姜山 2009 科学通报 54 557]

    [2]

    Stewart G R 2011 Rev. Mod. Phys. 83 1589

    [3]

    Guo J, Jin S, Wang G, Wang S, Zhu K, Zhou T, He M, Chen X 2010 Phys. Rev. B 82 180520

    [4]

    Fang M H, Wang H D, Dong C H, Li Z J, Feng C M, Chen J, Yuan H Q 2011 Europhys. Lett. 94 27009

    [5]

    Yan X W, Gao M, Lu Z Y, Xiang T 2011 Phys. Rev. Lett. 106 087005

    [6]

    Jun Z, Hui B C, Bourret-Courchesne E, Lee D H, and Birgeneau R J 2012 Phys. Rev. Lett. 109 267003

    [7]

    Shermadini Z, Krzton-Maziopa A, Bendele M, Khasanov R, Luetkens H, Conder K, Pomjakushina E, Weyeneth S, Pomjakushin V, Bossen O, Amato A 2011 Phys. Rev. Lett. 106 117602

    [8]

    Wang Z W, Wang Z, Song Y J, Ma C, Cai Y, Chen Z, Tian H F, Yang H X, Chen G F, Li J Q 2012 Phys. Chem. C 116 17847

    [9]

    Yuan R H, Dong T, Song Y J, Zheng P, Chen G F, Hu J P, Li J Q, Wang N L 2012 Sci. Rep. 2 221

    [10]

    Chen F, Xu M, Ge Q Q, Zhang Y, Ye Z R, Yang L X, Jiang J, Xie B P, Che R C, Zhang M, Wang A F, Chen X H, Shen D W, Hu J P, Feng D L 2011 Phys. Rev. X 1 021020

    [11]

    Wang D H, Dong C H, Li Z J, Feng C M, Chen J, Yuan H Q and Fang M H 2011 Europhys. Lett. 93 47004

    [12]

    Liu Z H, Richard P, Xu N, Xu G, Li Y, Fang X C, Jia L L, Chen G F, Wang D M, He J B, Qian T, Hu J P, Ding H, Wang S C 2012 Phys. Rev. Lett. 109 037003

    [13]

    Wang A F, Yan J J, Liu R H, Luo X G, Li Z Y, Wang X F, Zhang M, Ye G J, Cheng P, Xiang Z J, Chen X H 2011 Phys. Rev. B 83 060512

    [14]

    Daniel P S, Duck Y C, Helmut C, Melanie C F, Sevda A, Anna L, Mercouri G K 2012 Phys. Rev. B 86 184511

    [15]

    Ma Y C, Liu J W, Lu H W, Zheng H L 2007 J. Phys.: Condens. Matter 19 186203 Ito T, Takagi H, Ishibashi S, Ido T, Uchida S 1991 Nature 350 596

    [16]

    Texier Y, Deisenhofer J, Tsurkan V, Loidl A, Inosov D S, Friemel G, Bobroff J 2013 Phys. Rev. Lett. 108 237002

    [17]

    Mou D X, Liu S Y, Jia X W, He J F, Peng Y Y, Zhao L, Yu L, Liu G D, He S L, Dong X L, Zhang J, Wang H D, Dong C H, Fang M H, Wang X Y, Peng Q J, Wang Z M, Zhang S J, Yang F, Xu Z Y, Chen C T, Zhou X J 2011 Phys. Rev. Lett. 106 107001

    [18]

    Liu Y, Xing Q, Dennis K W, McCallum R W, Lograsso T A 2012 Phys. Rev. B 86 144507

    [19]

    Charnukha A, Cvitkovic A, Prokscha T, Prö pper D, Ocelic N, Suter A, Salman Z, Morenzoni E, Deisenhofer J, Tsurkan V, Loidl A, Keimer B, Boris A V 2012 Phys. Rev. Lett. 109 017003

  • [1] 李更, 丁洪, 汪自强, 高鸿钧. 铁基超导体中的马约拉纳零能模及其阵列构筑. 物理学报, 2024, 73(3): 030302. doi: 10.7498/aps.73.20232022
    [2] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓. 高压下TiO2纳米线晶粒和晶界性质及电输运行为. 物理学报, 2022, 71(9): 096101. doi: 10.7498/aps.71.20212276
    [3] 李妙聪, 陶前, 许祝安. 铁基超导体的输运性质. 物理学报, 2021, 70(1): 017404. doi: 10.7498/aps.70.20201836
    [4] 顾强强, 万思源, 杨欢, 闻海虎. 铁基超导体的扫描隧道显微镜研究进展. 物理学报, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [5] 林桐, 胡蝶, 时立宇, 张思捷, 刘妍琦, 吕佳林, 董涛, 赵俊, 王楠林. 铁基超导体Li0.8Fe0.2ODFeSe的红外光谱研究. 物理学报, 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [6] 王志成, 曹光旱. 新型交生结构自掺杂铁基超导体. 物理学报, 2018, 67(20): 207406. doi: 10.7498/aps.67.20181355
    [7] 王乃舟, 石孟竹, 雷彬, 陈仙辉. FeSe基超导体的探索与物性研究. 物理学报, 2018, 67(20): 207408. doi: 10.7498/aps.67.20181496
    [8] 龚冬良, 罗会仟. 铁基超导体中的反铁磁序和自旋动力学. 物理学报, 2018, 67(20): 207407. doi: 10.7498/aps.67.20181543
    [9] 郭静, 吴奇, 孙力玲. 高压下的铁基超导体:现象与物理. 物理学报, 2018, 67(20): 207409. doi: 10.7498/aps.67.20181651
    [10] 俞榕. 铁基超导体多轨道模型中的电子关联与轨道选择. 物理学报, 2015, 64(21): 217102. doi: 10.7498/aps.64.217102
    [11] 李世超, 甘远, 王靖珲, 冉柯静, 温锦生. 铁基超导体Fe1+yTe1-xSex中磁性的中子散射研究. 物理学报, 2015, 64(9): 097503. doi: 10.7498/aps.64.097503
    [12] 李政, 周睿, 郑国庆. 铁基超导体的量子临界行为. 物理学报, 2015, 64(21): 217404. doi: 10.7498/aps.64.217404
    [13] 赵敬龙, 董正超, 仲崇贵, 李诚迪. 量子线/铁基超导隧道结中隧道谱的研究. 物理学报, 2015, 64(5): 057401. doi: 10.7498/aps.64.057401
    [14] 何昱辰, 刘向军. 基于基液连续假设的大体系Cu-H2O纳米流体输运特性的模拟研究. 物理学报, 2015, 64(19): 196601. doi: 10.7498/aps.64.196601
    [15] 杜增义, 方德龙, 王震宇, 杜冠, 杨雄, 杨欢, 顾根大, 闻海虎. 铁基超导体FeSe0.5Te0.5表面隧道谱的研究. 物理学报, 2015, 64(9): 097401. doi: 10.7498/aps.64.097401
    [16] 刘瑞兰, 王徐亮, 唐超. 基于粒子群算法的有机半导体NPB传输特性辨识. 物理学报, 2014, 63(2): 028105. doi: 10.7498/aps.63.028105
    [17] 刘甦, 李斌, 王玮, 汪军, 刘楣. 铁基化合物 SrFeAsF以及 Co掺杂超导体SrFe0.875Co0.125AsF的电子结构和磁性. 物理学报, 2010, 59(6): 4245-4252. doi: 10.7498/aps.59.4245
    [18] 罗晓婧, 杨昌平, 宋学平, 徐玲芳. 巨介电常数氧化物CaCu3Ti4O12的介电和阻抗特性. 物理学报, 2010, 59(5): 3516-3522. doi: 10.7498/aps.59.3516
    [19] 翟 薇, 王 楠, 魏炳波. 偏晶溶液相分离过程的实时观测研究. 物理学报, 2007, 56(4): 2353-2358. doi: 10.7498/aps.56.2353
    [20] 蒋中英, 郁伟中, 黄彦君, 夏元复, 马淑新. SMMA/SMA共聚物共混物的自由体积的热动态特性与相分离行为的PALS研究. 物理学报, 2006, 55(6): 3136-3140. doi: 10.7498/aps.55.3136
计量
  • 文章访问数:  6343
  • PDF下载量:  700
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-26
  • 修回日期:  2013-10-28
  • 刊出日期:  2014-02-05

/

返回文章
返回