搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型全固态准晶体结构大模场光纤特性研究

廖文英 范万德 李园 陈君 卜凡华 李海鹏 王新亚 黄鼎铭

引用本文:
Citation:

新型全固态准晶体结构大模场光纤特性研究

廖文英, 范万德, 李园, 陈君, 卜凡华, 李海鹏, 王新亚, 黄鼎铭

Investigation of a novel all-solid large-mode-area photonic quasi-crystal fiber

Liao Wen-Ying, Fan Wan-De, Li Yuan, Chen Jun, Bu Fan-Hua, Li Hai-Peng, Wang Xin-Ya, Huang Ding-Ming
PDF
导出引用
  • 大模场单模光纤在高功率激光器、高功率光传输和高灵敏度传感器等领域具有重要意义. 设计了一种新型超低损耗大模场单模光纤,包层空气孔由掺氟硅玻璃棒代替,掺氟硅玻璃棒排列呈六重准晶体结构. 基于有限元法对光纤的传输特性进行了数值模拟. 研究了光纤结构参量变化对模式特性和有效模场面积的影响. 结果表明:波长在1064 nm处,有效模场面积高达5197 μm2,基模的限制性损耗低于10-5 dB/km,解决了大模场与低损耗之间的冲突;在1064–2000 nm波段内,基模与二阶模的限制性损耗相差7个量级,实现单模传输;半径为10 cm时,弯曲损耗小于 0.01 dB/m,具有良好的低弯曲损耗特性. 此光纤能够提高光纤热损伤阈值,减少接续损耗,全固态结构有效避免了空气孔塌陷,简化制备工艺,对高功率激光传输、光纤激光器和光纤放大器的发展具有重要意义.
    Large-mode-area single-mode fibers play an important role in the field of high power lasers, high power delivery, and high sensitivity sensor. A novel all-solid large-mode-area single-mode photonic quasi-crystal fiber with extremely low loss is proposed. This kind of fiber contains a hexagonal quasi-crystal array of slightly fluorine-doped silica rods in a silica background. Its structure and properties are simulated numerically in virtue of finite element method. Effects of variation of d/Λ, or Λ on fiber loss and effective mode-area properties are investigated. Numerical results demonstrate that an effective mode-area of 5197 μm2, low confinement loss of 10-5 dB/km for fundamental mode and high confinement loss of 100 dB/km of second-order mode at a wavelength of 1064 nm. Numerical simulations show that this fiber can operate effectively in single-mode and remove the conflict between large-mode-area and low loss. Moreover, the bending loss for a bending radius of 10 cm is as low as 0.01 dB/m. This fiber can increase the thermal damage threshold of the PQF, decrease the coupling loss and simplify the fabrication process. The design of new fibers is highly meaningful for the development of high power delivery, fiber lasers, and fiber amplifiers.
    • 基金项目: 南开大学本科生创新科研“百项工程”项目(批准号:BX11207)和国家自然科学基金国家基础科学人才培养基金(批准号:J1103208)资助的课题.
    • Funds: Project supported by ‘100 projects’ of Creative Research for the Undergraduates of Nankai University (Grant No. BX11207), and the Fund for Fostering Talents in Basic Science of the National Natural Science Foundation of China (Grant No. J1103208).
    [1]

    Jeong Y, Sahu J K, Payne D N 2004 Electron. Lett. 40 470

    [2]

    Fini J M 2007 J. Opt. Soc. Am. B 24 1669

    [3]

    Song Y J, Hu M L, Liu Q W, Li J Y, Chen W, Chai L, Wang Q Y 2008 Acta Phys. Sin. 57 5045 (in Chinese) [宋有建, 胡明列, 刘庆文, 李进延, 陈伟, 柴路, 王清月 2008 物理学报 57 5045]

    [4]

    Yang H R, Li X Y, Hong W, Hao J H 2012 Chin. Phys. B 21 024211

    [5]

    Jin C J, Cheng B Y, Man B Y, Li Z L, Zhang D Z 1999 Appl. Phys. Lett. 75 1848

    [6]

    Wang Y Q, Hu X Y, Xu X S, Cheng B Y, Zhang D Z 2003 Phys. Rev. B 68 165106

    [7]

    Notomi M, Suzuki H, Tamamura T, Edagawa K 2004 Phys. Rev. Lett. 92 123906

    [8]

    Wang K 2006 Phys. Rev. B 73 235122

    [9]

    Rochstuhl C, Lederer F 2006 New J. Phys. 206 233390

    [10]

    Zhang J Y, Tam H L, Wong W H, Pun Y B The 5th Pacific Rim Conference on Lasers and Electro-Optics Taipei China, Dec15–19, 2003 p117

    [11]

    Romero-Vivas J, Chigrin D, Lavrinenko A, Lavrinenko V, Sotomayor Torres M 2005 Opt. Express 13 826

    [12]

    Dyachenko P N, Miklyaev Y V 2006 SPIE. 6182 61822I

    [13]

    Knight J C, Birks T A, Cregan R F, Russell P S J 1998 Electron. Lett. 34 1374

    [14]

    Knight J C, Birks T A, Russell P S J, Atkin D M 1996 Opt. Lett. 21 1547

    [15]

    Fang H, Lou S Q, Guo T Y, Yao L, Li H L, Jian S S 2008 Chin. Phys. B 17 1029

    [16]

    Guo Y Y, Hou L T 2010 Acta Phys. Sin. 59 4041 (in Chinese) [郭艳艳, 侯蓝田 2010 物理学报 59 4041]

    [17]

    Ghosh S, Dasgupta S, Varshney R K, Richardson D J, Pal B P 2011 Opt. Express 19 21295

    [18]

    Xiao H, Dong X L, Zhou P, Xu X J and Zhao G M 2012 Chin. Phys. B 21 034201

    [19]

    Fleming J W, Wood D L 1983 Applied Optics 22 3102

    [20]

    Selleri S, Vincetti L, Cucinotta A, Zoboli M 2001 Opt. Quantum Electron 33 359

    [21]

    Xia C M, Zhou G Y, Han Y, Liu Z L, Hou L T 2011 Acta Phys. Sin. 60 094213 (in Chinese) [夏长明, 周桂耀, 韩颖, 刘兆伦, 侯蓝田 2011 物理学报 60 094213]

    [22]

    Haxha S, Ademgil H 2008 Opt. Commun. 281 278

    [23]

    Mortensen N A 2002 Opt. Express 10 341

    [24]

    Olszewski J, Szpulak M, Urbanczyk W 2005 Opt. Express 13 6015

  • [1]

    Jeong Y, Sahu J K, Payne D N 2004 Electron. Lett. 40 470

    [2]

    Fini J M 2007 J. Opt. Soc. Am. B 24 1669

    [3]

    Song Y J, Hu M L, Liu Q W, Li J Y, Chen W, Chai L, Wang Q Y 2008 Acta Phys. Sin. 57 5045 (in Chinese) [宋有建, 胡明列, 刘庆文, 李进延, 陈伟, 柴路, 王清月 2008 物理学报 57 5045]

    [4]

    Yang H R, Li X Y, Hong W, Hao J H 2012 Chin. Phys. B 21 024211

    [5]

    Jin C J, Cheng B Y, Man B Y, Li Z L, Zhang D Z 1999 Appl. Phys. Lett. 75 1848

    [6]

    Wang Y Q, Hu X Y, Xu X S, Cheng B Y, Zhang D Z 2003 Phys. Rev. B 68 165106

    [7]

    Notomi M, Suzuki H, Tamamura T, Edagawa K 2004 Phys. Rev. Lett. 92 123906

    [8]

    Wang K 2006 Phys. Rev. B 73 235122

    [9]

    Rochstuhl C, Lederer F 2006 New J. Phys. 206 233390

    [10]

    Zhang J Y, Tam H L, Wong W H, Pun Y B The 5th Pacific Rim Conference on Lasers and Electro-Optics Taipei China, Dec15–19, 2003 p117

    [11]

    Romero-Vivas J, Chigrin D, Lavrinenko A, Lavrinenko V, Sotomayor Torres M 2005 Opt. Express 13 826

    [12]

    Dyachenko P N, Miklyaev Y V 2006 SPIE. 6182 61822I

    [13]

    Knight J C, Birks T A, Cregan R F, Russell P S J 1998 Electron. Lett. 34 1374

    [14]

    Knight J C, Birks T A, Russell P S J, Atkin D M 1996 Opt. Lett. 21 1547

    [15]

    Fang H, Lou S Q, Guo T Y, Yao L, Li H L, Jian S S 2008 Chin. Phys. B 17 1029

    [16]

    Guo Y Y, Hou L T 2010 Acta Phys. Sin. 59 4041 (in Chinese) [郭艳艳, 侯蓝田 2010 物理学报 59 4041]

    [17]

    Ghosh S, Dasgupta S, Varshney R K, Richardson D J, Pal B P 2011 Opt. Express 19 21295

    [18]

    Xiao H, Dong X L, Zhou P, Xu X J and Zhao G M 2012 Chin. Phys. B 21 034201

    [19]

    Fleming J W, Wood D L 1983 Applied Optics 22 3102

    [20]

    Selleri S, Vincetti L, Cucinotta A, Zoboli M 2001 Opt. Quantum Electron 33 359

    [21]

    Xia C M, Zhou G Y, Han Y, Liu Z L, Hou L T 2011 Acta Phys. Sin. 60 094213 (in Chinese) [夏长明, 周桂耀, 韩颖, 刘兆伦, 侯蓝田 2011 物理学报 60 094213]

    [22]

    Haxha S, Ademgil H 2008 Opt. Commun. 281 278

    [23]

    Mortensen N A 2002 Opt. Express 10 341

    [24]

    Olszewski J, Szpulak M, Urbanczyk W 2005 Opt. Express 13 6015

  • [1] 惠战强, 刘瑞华, 高黎明, 韩冬冬, 李田甜, 巩稼民. 基于对称双环嵌套管的低损耗弱耦合六模空芯负曲率光纤. 物理学报, 2024, 73(7): 070702. doi: 10.7498/aps.73.20231785
    [2] 张媛, 姜文帆, 陈明阳. 低串扰低弯曲损耗环形芯少模多芯光纤的设计. 物理学报, 2022, 71(9): 094205. doi: 10.7498/aps.71.20211534
    [3] 郑斯文, 刘亚卓, 罗晓玲, 王丽辉, 张娜, 张晶晶, 金传洋, 徐丙立, 屈强, 陈玲. 三层芯结构在单模大模场面积低弯曲损耗光纤中的应用和分析. 物理学报, 2021, 70(22): 224214. doi: 10.7498/aps.70.20210410
    [4] 魏薇, 张志明, 唐莉勤, 丁镭, 范万德, 李乙钢. 六重准晶涡旋光光子晶体光纤特性. 物理学报, 2019, 68(11): 114209. doi: 10.7498/aps.68.20190381
    [5] 靳文星, 任国斌, 裴丽, 姜有超, 吴越, 谌亚, 杨宇光, 任文华, 简水生. 环绕空气孔结构的双模大模场面积多芯光纤的特性分析. 物理学报, 2017, 66(2): 024210. doi: 10.7498/aps.66.024210
    [6] 郑兴娟, 任国斌, 黄琳, 郑鹤玲. 少模光纤的弯曲损耗研究. 物理学报, 2016, 65(6): 064208. doi: 10.7498/aps.65.064208
    [7] 廖文英, 范万德, 李海鹏, 隋佳男, 曹学伟. 准晶体结构光纤表面等离子体共振传感器特性研究. 物理学报, 2015, 64(6): 064213. doi: 10.7498/aps.64.064213
    [8] 赵楠, 陈瑰, 王一礴, 彭景刚, 李进延. 双包层大模场面积保偏掺镱光子晶体光纤研究. 物理学报, 2014, 63(2): 024202. doi: 10.7498/aps.63.024202
    [9] 陈艳, 周桂耀, 夏长明, 侯峙云, 刘宏展, 王超. 具有双模特性的大模场面积微结构光纤的设计. 物理学报, 2014, 63(1): 014701. doi: 10.7498/aps.63.014701
    [10] 张银, 陈明阳, 周骏, 张永康. 微结构芯大模场平顶光纤及其传输特性分析. 物理学报, 2013, 62(17): 174211. doi: 10.7498/aps.62.174211
    [11] 易昌申, 戴世勋, 张培晴, 王训四, 沈祥, 徐铁峰, 聂秋华. 新型单模大模场红外硫系玻璃光子晶体光纤设计研究. 物理学报, 2013, 62(8): 084206. doi: 10.7498/aps.62.084206
    [12] 王鑫, 娄淑琴, 鹿文亮. 新型三角芯抗弯曲大模场面积光子晶体光纤. 物理学报, 2013, 62(18): 184215. doi: 10.7498/aps.62.184215
    [13] 林桢, 郑斯文, 任国斌, 简水生. 七芯及十九芯大模场少模光纤的特性研究和比对分析. 物理学报, 2013, 62(6): 064214. doi: 10.7498/aps.62.064214
    [14] 娄淑琴, 鹿文亮, 王鑫. 新型抗弯曲大模场面积光子晶体光纤. 物理学报, 2013, 62(4): 044201. doi: 10.7498/aps.62.044201
    [15] 郑斯文, 林桢, 任国斌, 简水生. 一种新型多芯-双模-大模场面积光纤的设计和分析. 物理学报, 2013, 62(4): 044224. doi: 10.7498/aps.62.044224
    [16] 陈瑰, 蒋作文, 彭景刚, 李海清, 戴能利, 李进延. 空气包层大模场面积掺镱光子晶体光纤研究. 物理学报, 2012, 61(14): 144206. doi: 10.7498/aps.61.144206
    [17] 张鑫, 胡明列, 宋有健, 柴路, 王清月. 大模场面积光子晶体光纤耗散孤子锁模激光器. 物理学报, 2010, 59(3): 1863-1869. doi: 10.7498/aps.59.1863
    [18] 郭艳艳, 侯蓝田. 全固态八边形大模场光子晶体光纤的设计. 物理学报, 2010, 59(6): 4036-4041. doi: 10.7498/aps.59.4036
    [19] 张驰, 胡明列, 宋有建, 张鑫, 柴路, 王清月. 自由耦合输出的大模场面积光子晶体光纤锁模激光器. 物理学报, 2009, 58(11): 7727-7734. doi: 10.7498/aps.58.7727
    [20] 宋有建, 胡明列, 刘庆文, 李进延, 陈 伟, 柴 路, 王清月. 掺Yb3+双包层大模场面积光纤锁模激光器. 物理学报, 2008, 57(8): 5045-5048. doi: 10.7498/aps.57.5045
计量
  • 文章访问数:  5542
  • PDF下载量:  697
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-13
  • 修回日期:  2013-09-14
  • 刊出日期:  2014-02-05

/

返回文章
返回