搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CO2激光光栅式扫描修复熔石英表面缺陷的实验研究与数值模拟

蒋勇 贺少勃 袁晓东 王海军 廖威 吕海兵 刘春明 向霞 邱荣 杨永佳 郑万国 祖小涛

引用本文:
Citation:

CO2激光光栅式扫描修复熔石英表面缺陷的实验研究与数值模拟

蒋勇, 贺少勃, 袁晓东, 王海军, 廖威, 吕海兵, 刘春明, 向霞, 邱荣, 杨永佳, 郑万国, 祖小涛

Experimental investigation and numerical simulation of defect elimination by CO2 laser raster scanning on fused silica

Jiang Yong, He Shao-Bo, Yuan Xiao-Dong, Wang Hai-Jun, Liao Wei, Lü Hai-Bing, Liu Chun-Ming, Xiang Xia, Qiu Rong, Yang Yong-Jia, Zheng Wan-Guo, Zu Xiao-Tao
PDF
导出引用
  • 基于熔石英材料对波长为10.6 μm的CO2激光具有强吸收作用这一特点,提出采用CO2激光光栅式多次扫描修复熔石英光学元件表面密集分布的划痕和抛光点等缺陷的方法. 实验结果表明,在合理的扫描参数下,元件表面的划痕和抛光点等缺陷可被充分地消除. 损伤阈值测试结果表明,表面划痕和抛光点等缺陷被完全消除的元件的损伤阈值可回复到或超过基底的损伤阈值. 同时结合有限元软件Ansys的模拟结果分析了CO2激光扫描修复及消除元件表面划痕和抛光点等缺陷的过程. 本文为消除元件表面划痕和抛光点等缺陷提供了非常有意义的参考.
    Based on the fact that fused silica material can strongly absorb 10.6 μm CO2 laser, a method of using CO2 laser multi-time raster scanning to repair the densely distributed scratches and polishing pits is investigated. The experimental results indicate that the scratches and polishing pits can be fully eliminated under the appropriate parameters. The damage threshold testing results also indicate that the damage threshold for fully eliminating scratches and polishing pits can reach or exceed the damage threshold of substrate. Meanwhile, Combining the simulation results obtained by finite element software-Ansys, the processes of the scratches and polishing pits eliminated by CO2 laser are analyzed. The present work is of significance for the study on how to eliminate the scratches and polishing pits on the surface of component.
    • 基金项目: 西南科技大学博士基金(批准号:13zx7120)和国家自然科学基金-中国工程物理研究院联合基金(批准号:10976025,11076008)资助的课题.
    • Funds: Project supported by Ph. D. Research Fund of Southwest University of Science and Technology (Grant No. 13zx7120) and the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant Nos. 10976025, 11076008).
    [1]

    Bercegol H, Grua P 2008 Proc. of SPIE 7132 71321B

    [2]

    Liu H J, Zhou X D, Huang J, Wang F R, Jiang X D, Huang J, Wu W D, Zheng W G 2011 Acta Phys. Sin. 60 065202 (in Chinese) [刘红婕, 周信达, 黄进, 王凤蕊, 蒋晓东, 黄竞, 吴卫东, 郑万国 2011 物理学报 60 065202]

    [3]

    Bouchut P, Garrec P, Pelle C 2003 Proc. of SPIE 4932 103

    [4]

    Wang F R, Huang J, Liu H J, Zhou X D, Jiang X D, Wu W D, Zheng W G 2010 Acta Phys. Sin 59 5122 (in Chinese) [王凤蕊, 黄进, 刘红婕, 周信达, 蒋晓东, 吴卫东, 郑万国 2010 物理学报 59 5122]

    [5]

    Hrubesh L W, Norton M A, Molander W A, Donohue E E, Maricle S M, Penetrante B M, Brusasco R M, Grundler W, Butler J A, Carr J W, Hill R M, Summers L J, Feit M D, Rubenchik A, Key M H, Wegner P J, Burnham A K, Hackel L A, Kozlowski M R 2002 Proc. of SPIE 4679 23

    [6]

    Brusasco R M, Penetrante B M, Butler J A, Hrubesh L W 2001 Proc. of SPIE 4679 40

    [7]

    Guss G, Bass I, Draggoo V, Hackel R, Payne S, Lancaster M, Mak P 2007 Proc. of SPIE 6403 64030M

    [8]

    Jiang Y, Xiang X, Liu C M, Luo C S, Wang H J, Yuan X D, He S B, Ren W, L H Bi, Zheng W G, Zu X T 2012 Chin. Phys. B 21 064219

    [9]

    Mendez E, Nowak K M, Baker H J, Villarreal F J, Hall D R 2006 Appl. Opt. 45 5358

    [10]

    Bouchut P, Delrive L, Decruppe Dl, Garrec P 2004 Proc. of SPIE 5252 122

    [11]

    Brusasco R M, Penetrante B M, Butler J A, Maricle S M, Peterson J E 2002 Proc. of SPIE 4697 34

    [12]

    Nowak K M, Baker H J, Hall D R 2006 Appl. Opt. 45 162

    [13]

    Temple P A, Lowdermilk W H, Milam D 1982 Appl. Opt. 21 3249

    [14]

    Mendez E, Baker H J, Nowak K M, Villarreal F, Hall D R 2005 Proc. of SPIE 5647 165

    [15]

    Xiao Y M, Bass M 1983 Appl. Opt. 22 2933

    [16]

    Wong L, Suratwala T, Feit M D, Miller P E, Steele R 2009 J. Non-Cryst. Sol. 355 797

    [17]

    Genin F Y, Salleo A, Pistor T V, Chase L L 2001 J. Opt. Soc. Am. A 18 2607

    [18]

    Zhao J, Sullivan J, Zayac J, Bennett T D 2004 J. Appl. Phys. 95 5475

    [19]

    Yang S T, Matthews M J, Elhadj S, Cooke D, Guss G M, Draggoo V G, Wegner P L J 2010 Appl. Opt. 49 2606

    [20]

    Bouchut P, Decruppe D, Delrive L 2004 J. Appl. Phys. 96 3221

  • [1]

    Bercegol H, Grua P 2008 Proc. of SPIE 7132 71321B

    [2]

    Liu H J, Zhou X D, Huang J, Wang F R, Jiang X D, Huang J, Wu W D, Zheng W G 2011 Acta Phys. Sin. 60 065202 (in Chinese) [刘红婕, 周信达, 黄进, 王凤蕊, 蒋晓东, 黄竞, 吴卫东, 郑万国 2011 物理学报 60 065202]

    [3]

    Bouchut P, Garrec P, Pelle C 2003 Proc. of SPIE 4932 103

    [4]

    Wang F R, Huang J, Liu H J, Zhou X D, Jiang X D, Wu W D, Zheng W G 2010 Acta Phys. Sin 59 5122 (in Chinese) [王凤蕊, 黄进, 刘红婕, 周信达, 蒋晓东, 吴卫东, 郑万国 2010 物理学报 59 5122]

    [5]

    Hrubesh L W, Norton M A, Molander W A, Donohue E E, Maricle S M, Penetrante B M, Brusasco R M, Grundler W, Butler J A, Carr J W, Hill R M, Summers L J, Feit M D, Rubenchik A, Key M H, Wegner P J, Burnham A K, Hackel L A, Kozlowski M R 2002 Proc. of SPIE 4679 23

    [6]

    Brusasco R M, Penetrante B M, Butler J A, Hrubesh L W 2001 Proc. of SPIE 4679 40

    [7]

    Guss G, Bass I, Draggoo V, Hackel R, Payne S, Lancaster M, Mak P 2007 Proc. of SPIE 6403 64030M

    [8]

    Jiang Y, Xiang X, Liu C M, Luo C S, Wang H J, Yuan X D, He S B, Ren W, L H Bi, Zheng W G, Zu X T 2012 Chin. Phys. B 21 064219

    [9]

    Mendez E, Nowak K M, Baker H J, Villarreal F J, Hall D R 2006 Appl. Opt. 45 5358

    [10]

    Bouchut P, Delrive L, Decruppe Dl, Garrec P 2004 Proc. of SPIE 5252 122

    [11]

    Brusasco R M, Penetrante B M, Butler J A, Maricle S M, Peterson J E 2002 Proc. of SPIE 4697 34

    [12]

    Nowak K M, Baker H J, Hall D R 2006 Appl. Opt. 45 162

    [13]

    Temple P A, Lowdermilk W H, Milam D 1982 Appl. Opt. 21 3249

    [14]

    Mendez E, Baker H J, Nowak K M, Villarreal F, Hall D R 2005 Proc. of SPIE 5647 165

    [15]

    Xiao Y M, Bass M 1983 Appl. Opt. 22 2933

    [16]

    Wong L, Suratwala T, Feit M D, Miller P E, Steele R 2009 J. Non-Cryst. Sol. 355 797

    [17]

    Genin F Y, Salleo A, Pistor T V, Chase L L 2001 J. Opt. Soc. Am. A 18 2607

    [18]

    Zhao J, Sullivan J, Zayac J, Bennett T D 2004 J. Appl. Phys. 95 5475

    [19]

    Yang S T, Matthews M J, Elhadj S, Cooke D, Guss G M, Draggoo V G, Wegner P L J 2010 Appl. Opt. 49 2606

    [20]

    Bouchut P, Decruppe D, Delrive L 2004 J. Appl. Phys. 96 3221

  • [1] 张学阳, 陈军, 胡望宇. 激光辐照下熔石英表面损伤的原子模拟. 物理学报, 2023, 72(15): 156201. doi: 10.7498/aps.72.20230606
    [2] 庄晓如, 徐心海, 杨智, 赵延兴, 余鹏. 高温吸热管内超临界CO2传热特性的数值模拟. 物理学报, 2021, 70(3): 034401. doi: 10.7498/aps.70.20201005
    [3] 张丽娟, 张传超, 陈静, 白阳, 蒋一岚, 蒋晓龙, 王海军, 栾晓雨, 袁晓东, 廖威. 激光诱导熔石英表面损伤修复中的气泡形成和控制研究. 物理学报, 2018, 67(1): 016103. doi: 10.7498/aps.67.20171839
    [4] 白阳, 张丽娟, 廖威, 周海, 张传超, 陈静, 叶亚云, 蒋一岚, 王海军, 栾晓雨, 袁晓东, 郑万国. 熔石英损伤修复坑下游光场调制的数值模拟与实验研究. 物理学报, 2016, 65(2): 024205. doi: 10.7498/aps.65.024205
    [5] 韩伟, 冯斌, 郑奎兴, 朱启华, 郑万国, 巩马理. 高功率激光装置熔石英紫外损伤增长研究. 物理学报, 2016, 65(24): 246102. doi: 10.7498/aps.65.246102
    [6] 沈超, 程湘爱, 田野, 许中杰, 江天. 1064nm纳秒激光对熔石英元件后表面击穿的实验与数值研究. 物理学报, 2016, 65(15): 155201. doi: 10.7498/aps.65.155201
    [7] 徐肖肖, 吴杨杨, 刘朝, 王开正, 叶建. 水平螺旋管内超临界CO2冷却换热的数值模拟. 物理学报, 2015, 64(5): 054401. doi: 10.7498/aps.64.054401
    [8] 刘春明, 杨亮, 晏中华, 蒋勇, 王海军, 廖威, 向霞, 贺少勃, 吕海兵, 袁晓东, 郑万国, 祖小涛. CO2激光局域辐照对熔石英损伤特性的影响. 物理学报, 2013, 62(9): 094701. doi: 10.7498/aps.62.094701
    [9] 李熙斌, 袁晓东, 贺少勃, 吕海兵, 王海军, 向霞, 郑万国. 激光钝化对熔石英修复后损伤性能影响的实验研究. 物理学报, 2012, 61(6): 064401. doi: 10.7498/aps.61.064401
    [10] 章春来, 刘春明, 向霞, 戴威, 王治国, 李莉, 袁晓东, 贺少勃, 祖小涛. 裂纹或气泡对熔石英损伤修复坑场调制的近场模拟. 物理学报, 2012, 61(12): 124214. doi: 10.7498/aps.61.124214
    [11] 章春来, 王治国, 向霞, 刘春明, 李莉, 袁晓东, 贺少勃, 祖小涛. 熔石英后表面坑点型划痕对光场调制的近场模拟. 物理学报, 2012, 61(11): 114210. doi: 10.7498/aps.61.114210
    [12] 江微微, 范林勇, 赵瑞峰, 卫延, 裴丽, 简水生. 基于双芯光纤耦合器的梳状滤波器及其CO2激光调节. 物理学报, 2011, 60(4): 044214. doi: 10.7498/aps.60.044214
    [13] 刘红婕, 周信达, 黄进, 王凤蕊, 蒋晓东, 黄竞, 吴卫东, 郑万国. 355 nm纳秒紫外激光辐照下熔石英前后表面损伤的对比研究. 物理学报, 2011, 60(6): 065202. doi: 10.7498/aps.60.065202
    [14] 花金荣, 祖小涛, 李莉, 向霞, 陈猛, 蒋晓东, 袁晓东, 郑万国. 熔石英亚表面三维Hertz锥形划痕附近光强分布的数值模拟. 物理学报, 2010, 59(4): 2519-2524. doi: 10.7498/aps.59.2519
    [15] 王凤蕊, 黄进, 刘红婕, 周信达, 蒋晓东, 吴卫东, 郑万国. 激光诱导HF酸刻蚀后熔石英后表面划痕的损伤行为研究. 物理学报, 2010, 59(7): 5122-5127. doi: 10.7498/aps.59.5122
    [16] 刘红婕, 黄进, 王凤蕊, 周信达, 蒋晓东, 吴卫东. 熔石英表面热致应力对激光损伤行为影响的研究. 物理学报, 2010, 59(2): 1308-1313. doi: 10.7498/aps.59.1308
    [17] 朱涛, 宋韵, 饶云江, 朱永. CO2激光写入旋转折变型长周期光纤光栅的制作及理论分析. 物理学报, 2009, 58(7): 4738-4745. doi: 10.7498/aps.58.4738
    [18] 朱 涛, 饶云江, 莫秋菊, 王久玲. 高频CO2激光脉冲写入超长周期光纤光栅特性研究. 物理学报, 2007, 56(9): 5287-5292. doi: 10.7498/aps.56.5287
    [19] 朱 涛, 饶云江, 莫秋菊. 基于超长周期光纤光栅的高灵敏度扭曲传感器. 物理学报, 2006, 55(1): 249-253. doi: 10.7498/aps.55.249
    [20] 于艳梅, 杨根仓, 赵达文, 吕衣礼, A. KARMA, C. BECKERMANN. 过冷熔体中枝晶生长的相场法数值模拟. 物理学报, 2001, 50(12): 2423-2428. doi: 10.7498/aps.50.2423
计量
  • 文章访问数:  4926
  • PDF下载量:  521
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-19
  • 修回日期:  2013-11-25
  • 刊出日期:  2014-03-05

/

返回文章
返回