搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高精度实时主动轴向防漂移系统研究

霍英东 曹博 于斌 陈丹妮 牛憨笨

引用本文:
Citation:

高精度实时主动轴向防漂移系统研究

霍英东, 曹博, 于斌, 陈丹妮, 牛憨笨

A real-time axial activeanti-drift device with high-precision

Huo Ying-Dong, Cao Bo, Yu Bin, Chen Dan-Ni, Niu Han-Ben
PDF
导出引用
  • 基于单分子定位的荧光纳米分辨显微成像中, 系统漂移会使得单分子定位出现额外偏差, 从而使重构图像的分辨率降低, 造成图像模糊. 因此, 对系统漂移量的控制至关重要. 近年来, 防漂移的方法层出不穷. 本文针对其中一种利用光学测量原理和引入负反馈的防漂移方法做了系统的研究, 分析了其原理和实现过程, 对整个系统进行了误差分析, 通过实验标定了整个防漂移系统的精度. 该系统可以主动实时地校正漂移量, 实现了显微镜轴向9.93 nm的防漂移精度. 与现有商用的显微镜自带的防漂移装置相比, 防漂移精度提高了一个量级.
    In a fluorescent nano-resolution microscope based on single molecular localization, drift of focal plane will bring an additional deviation to the accuracy of single molecular localization. Consequently, this will reduce the final resolution of the reconstructed image and cause image degradation. Therefore, it is vital to control the system drift to a minimum level as much as possible. In recent years, the anti-drift ways emerged in endlessly. In this paper we made a systematic study aiming at the method in which optical measurement and negative feedback control are used. The basic principle and its implementation of the system are analyzed, and possible error is also evaluated. Finally, the precision of the system is tested experimentally. With this device, axial drift can be detected and corrected automatically in time, and the axial anti-drift accuracy as high as 9.93 nm can be achieved, which is one order higher than that of the existing commercial microscopies.
    • 基金项目: 国家重点基础研究发展计划 (批准号: 2012CB825802, 2015CB352005)、国家自然科学基金 (批准号: 61335001, 61235012, 61178080, 11004136, 60878053)、国家重大科学仪器设备开发专项 (批准号: 2012YQ15009203)和深圳市科技计划 (批准号: ZYC201105170233A, JCYJ20120613173049560)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2012CB825802, 2015CB352005), the National Natural Science Foundation of China (Grant Nos. 61335001, 61235012, 61178080, 11004136, 60878053), the Special Funds of the Major Scientific Instruments Equipment Development of China (Grant No. 2012YQ15009203), and the Science and Technology Planning of Shenzhen, China (Grant Nos. ZYC201105170233A, JCYJ20120613173049560).
    [1]

    Huang B, Wang W, Bates M, Zhuang X 2008 Science 319 810

    [2]

    Pavani S R P, Thompson M A, Biteen J S, Lord S J, Liu N, Twieg R J, Piestun R, Moerner W 2009 PNAS 106 2995

    [3]

    Juette M F, Gould T J, Lessard M D, Mlodzianoski M J, Nagpure B S, Bennett B T, Hess S T, Bewersdorf J 2008 Nat. Methods 5 527

    [4]

    Rust M J, Bates M, Zhuang X 2006 Nat. Methods 3 793

    [5]

    Chen D N, Liu L, Yu B, Niu H B 2010 Acta Phys. Sin. 59 6948 (in Chinese) [陈丹妮, 刘磊, 于斌, 牛憨笨 2010 物理学报 59 6948]

    [6]

    Shtengel G, Galbraith J A, Galbraith C G, Lippincott-Schwartz J, Gillette J M, Manley S, Sougrat R, Waterman C M, Kanchanawong P, Davidson M W 2009 PNAS 106 3125

    [7]

    Ram S, Prabhat P, Ward E S, Ober R J 2009 Opt. Express 17 6881

    [8]

    Li H, Yu B, Chen D N, Niu H B 2013 Acta Phys. Sin. 62 124201 (in Chinese) [李恒, 于斌, 陈丹妮, 牛憨笨 2013 物理学报 62 124201]

    [9]

    Yu B, Li H, Chen D N, Niu H B 2013 Acta Phys. Sin. 62 154206 (in Chinese) [于斌, 李恒, 陈丹妮, 牛憨笨 2013 物理学报 62 154206]

    [10]

    Shroff H, Galbraith C G, Galbraith J A, Betzig E 2008 Nat. Methods 5 417

    [11]

    Bates M, Huang B, Dempsey G T, Zhuang X 2007 Science 317 1749

    [12]

    Gould T J, Verkhusha V V, Hess S T 2009 Nat. Protoc. 4 291

    [13]

    Peters J 2008 Nat. Methods, Application Notes

    [14]

    Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F 2006 Science 313 1642

    [15]

    Carter A R, King G M, Ulrich T A, Halsey W, Alchenberger D, Perkins T T 2007 Appl. Opt. 46 421

    [16]

    Lee S H, Baday M, Tjioe M, Simonson P D, Zhang R, Cai E, Selvin P R 2012 Opt. Express 20 12177

    [17]

    Mcgorthy R, Kamiyama D, Huang B 2013 Opt. Nanosc. 2 3

    [18]

    Wade A, Fitzke F 1998 Opt. Express 3 190

    [19]

    Mlodzianoski M J, Schreiner J M, Callahan S P, Smolková K, Dlasková A, Šantorová J, Ježek P, Bewersdorf J 2011 Opt. Express 19 15009

  • [1]

    Huang B, Wang W, Bates M, Zhuang X 2008 Science 319 810

    [2]

    Pavani S R P, Thompson M A, Biteen J S, Lord S J, Liu N, Twieg R J, Piestun R, Moerner W 2009 PNAS 106 2995

    [3]

    Juette M F, Gould T J, Lessard M D, Mlodzianoski M J, Nagpure B S, Bennett B T, Hess S T, Bewersdorf J 2008 Nat. Methods 5 527

    [4]

    Rust M J, Bates M, Zhuang X 2006 Nat. Methods 3 793

    [5]

    Chen D N, Liu L, Yu B, Niu H B 2010 Acta Phys. Sin. 59 6948 (in Chinese) [陈丹妮, 刘磊, 于斌, 牛憨笨 2010 物理学报 59 6948]

    [6]

    Shtengel G, Galbraith J A, Galbraith C G, Lippincott-Schwartz J, Gillette J M, Manley S, Sougrat R, Waterman C M, Kanchanawong P, Davidson M W 2009 PNAS 106 3125

    [7]

    Ram S, Prabhat P, Ward E S, Ober R J 2009 Opt. Express 17 6881

    [8]

    Li H, Yu B, Chen D N, Niu H B 2013 Acta Phys. Sin. 62 124201 (in Chinese) [李恒, 于斌, 陈丹妮, 牛憨笨 2013 物理学报 62 124201]

    [9]

    Yu B, Li H, Chen D N, Niu H B 2013 Acta Phys. Sin. 62 154206 (in Chinese) [于斌, 李恒, 陈丹妮, 牛憨笨 2013 物理学报 62 154206]

    [10]

    Shroff H, Galbraith C G, Galbraith J A, Betzig E 2008 Nat. Methods 5 417

    [11]

    Bates M, Huang B, Dempsey G T, Zhuang X 2007 Science 317 1749

    [12]

    Gould T J, Verkhusha V V, Hess S T 2009 Nat. Protoc. 4 291

    [13]

    Peters J 2008 Nat. Methods, Application Notes

    [14]

    Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F 2006 Science 313 1642

    [15]

    Carter A R, King G M, Ulrich T A, Halsey W, Alchenberger D, Perkins T T 2007 Appl. Opt. 46 421

    [16]

    Lee S H, Baday M, Tjioe M, Simonson P D, Zhang R, Cai E, Selvin P R 2012 Opt. Express 20 12177

    [17]

    Mcgorthy R, Kamiyama D, Huang B 2013 Opt. Nanosc. 2 3

    [18]

    Wade A, Fitzke F 1998 Opt. Express 3 190

    [19]

    Mlodzianoski M J, Schreiner J M, Callahan S P, Smolková K, Dlasková A, Šantorová J, Ježek P, Bewersdorf J 2011 Opt. Express 19 15009

  • [1] 郗玲玲, 杨晓燕, 张天柱, 肖游, 尤立星, 李浩. 高综合性能超导纳米线单光子探测器. 物理学报, 2023, 72(11): 118501. doi: 10.7498/aps.72.20230326
    [2] 刘晓轩, 孙飞扬, 吴颖, 杨盛谊, 邹炳锁. 硅纳米线阵列光电探测器研究进展. 物理学报, 2023, 72(6): 068501. doi: 10.7498/aps.72.20222303
    [3] 赵吉玉, 谭秋红, 刘磊, 杨伟业, 王前进, 刘应开. 基于Au纳米岛修饰的CdSSe纳米带光电探测器. 物理学报, 2023, 72(9): 098103. doi: 10.7498/aps.72.20222021
    [4] 李杭, 陈萍, 田进寿, 薛彦华, 王俊锋, 缑永胜, 张敏睿, 何凯, 徐向晏, 赛小锋, 李亚晖, 刘百玉, 王向林, 辛丽伟, 高贵龙, 汪韬, 王兴, 赵卫. 基于太赫兹脉冲加速及扫描电子束的高时间分辨探测器. 物理学报, 2022, 71(2): 028501. doi: 10.7498/aps.71.20210871
    [5] 宋文刚, 张立军, 张晶, 王冠鹰. 硅漂移探测器数字脉冲处理技术. 物理学报, 2022, 71(1): 012903. doi: 10.7498/aps.71.20211062
    [6] 张彪, 陈奇, 管焰秋, 靳飞飞, 王昊, 张蜡宝, 涂学凑, 赵清源, 贾小氢, 康琳, 陈健, 吴培亨. 超导纳米线单光子探测器光子响应机制研究进展. 物理学报, 2021, 70(19): 198501. doi: 10.7498/aps.70.20210652
    [7] 李杭, 陈萍, 田进寿. 基于太赫兹脉冲加速及扫描电子束的高时间分辨探测器研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210871
    [8] 宋文刚, 张立军, 张晶, 王冠鹰. 硅漂移探测器数字脉冲处理技术研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211062
    [9] 孙浚凯, 王军转, 施毅. 基于锥形硅纳米线色彩分辨探测能力仿真. 物理学报, 2021, 70(11): 116103. doi: 10.7498/aps.70.20202031
    [10] 张伟, 张合, 陈勇, 张祥金, 徐孝彬. 脉冲激光四象限探测器测角不确定性统计分布. 物理学报, 2017, 66(1): 012901. doi: 10.7498/aps.66.012901
    [11] 吕绮雯, 郑阳恒, 田彩星, 刘福虎, 蔡啸, 方建, 高龙, 葛永帅, 刘颖彪, 孙丽君, 孙希磊, 牛顺利, 王志刚, 谢宇广, 薛镇, 俞伯祥, 章爱武, 胡涛, 吕军光. 利用ICCD定位宇宙线来测量探测器时间分辨的方法研究. 物理学报, 2012, 61(7): 072904. doi: 10.7498/aps.61.072904
    [12] 马晓燠, 郭友明, 饶长辉, 魏凯, 田雨, 饶学军. 多阳极PMT的串扰对四象限倾斜跟踪传感器跟踪精度的影响. 物理学报, 2012, 61(24): 242902. doi: 10.7498/aps.61.242902
    [13] 马晓燠, 母杰, 饶长辉. 死区对四象限跟踪传感器跟踪精度的影响. 物理学报, 2012, 61(7): 072903. doi: 10.7498/aps.61.072903
    [14] 王伟, 周常河, 余俊杰. 三环位相型光瞳滤波器的横向超分辨与轴向焦深扩展. 物理学报, 2011, 60(2): 024201. doi: 10.7498/aps.60.024201
    [15] 张蜡宝, 康琳, 陈健, 赵清源, 郏涛, 许伟伟, 曹春海, 金飚兵, 吴培亨. 超导纳米线单光子探测器. 物理学报, 2011, 60(3): 038501. doi: 10.7498/aps.60.038501
    [16] 陈丹妮, 刘磊, 于斌, 牛憨笨. HeLa细胞突起中微丝束的纳米分辨荧光成像. 物理学报, 2010, 59(10): 6948-6954. doi: 10.7498/aps.59.6948
    [17] 云茂金, 万 勇, 孔伟金, 王 美, 刘均海, 梁 伟. 可调谐位相型光瞳滤波器的横向光学超分辨和轴向扩展焦深. 物理学报, 2008, 57(1): 194-199. doi: 10.7498/aps.57.194
    [18] 张小东, 杨贺润, 段利敏, 徐瑚珊, 胡碧涛, 李春艳, 李祖玉. Micromegas探测器计数曲线、增益以及能量分辨特性的研究. 物理学报, 2008, 57(4): 2141-2144. doi: 10.7498/aps.57.2141
    [19] 刘春香, 郭红莲, 降雨强, 李兆霖, 程丙英, 张道中. 光镊系统中光放大倍数对测量结果的影响. 物理学报, 2005, 54(3): 1162-1166. doi: 10.7498/aps.54.1162
    [20] 刘 力, 邓小强, 王桂英, 徐至展. 改善共焦系统轴向分辨率的位相型光瞳滤波器. 物理学报, 2001, 50(1): 48-51. doi: 10.7498/aps.50.48
计量
  • 文章访问数:  5441
  • PDF下载量:  282
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-13
  • 修回日期:  2014-09-10
  • 刊出日期:  2015-01-05

/

返回文章
返回