搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压烧结法制备Bi2Te3纳米晶块体热电性能的研究

吴芳 王伟

引用本文:
Citation:

高压烧结法制备Bi2Te3纳米晶块体热电性能的研究

吴芳, 王伟

Thermoelectric properties of the Bi2Te3 nanocrystalline bulk alloy pressed by the high-pressure sintering

Wu Fang, Wang Wei
PDF
导出引用
  • 用高压烧结法对水热法制备的Bi2Te3纳米线及纳米颗粒粉体进行了压制成型, 并与真空热压法制备的样品进行了形貌和热电性能的比较. 研究表明, 高压烧结样品内的晶粒尺寸明显小于热压样品. 热电性能的研究表明, 高压烧结样品的电阻率、赛贝克系数和热导率均优于真空热压样品. 由纳米线粉体高压烧结的样品其热电优值ZT 在室温时达到了0.5, 高于真空热压样品的值, 表明高压烧结是热电材料纳米粉体成型的一种有效方法.
    Bi2Te3 nanowires and nanoparticles are synthesized by hydrothermal method, and the nanopowders are pressed into bulk pellets by high-pressure sintering or vacuum hot-pressed. The scanning electron microscope (SEM) results and thermal properties of such bulk samples are compared. The SEM result shows that the grain size of the high-pressure sintering sample is much smaller than that of the hot-pressed sample. The thermal properties show that the electrical resistivity, Seebeck coefficient, and thermal conductivity of the high-pressure sintering sample are all better than those of the hot-pressed sample. The ZT value of the high-pressure sintering sample prepared by nanowires reaches 0.5 at room temperature, which is much higher than that of the hot-pressed sample. Therefore the high-pressure sintering provides an effective method to press nanopowders to bulk.
    • 基金项目: 河南省重点科技攻关项目(批准号: 142102210043)和河南省教育厅科学技术研究重点项目(批准号: 14A140017)资助的课题.
    • Funds: Project supported by the Science and Technology Development Program of Henan Province, China (Grant No. 142102210043) and the Key Program of Science and Technology Research of Henan Educational Committee, China (Grant No. 14A140017).
    [1]

    Baxter J, Bian Z X, Chen G, Danielson D, Dresselhaus M S, Fedorov A G, Fisher T S, Jones C W, Maginn E, Kortshagen U, Manthiram A, Nozik A, Rolison D R, Sands T, Shi L, Sholl D, Wu Y Y 2009 Energ. Environ. Sci. 2 559

    [2]

    Wu S H, Ryosuke N, Masatsugu, Zhang Q S, Chihaya A 2014 Chin. Phys. B 23 098502

    [3]

    Liu N, Luo X G, Zhang M L 2014 Chin. Phys. B 23 080502

    [4]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105

    [5]

    Yang M J, Shen Q, Zhang L M 2011 Chin. Phys. B 20 106202

    [6]

    Chung D Y, Hogan T, Brazis P, Rocci-Lane M, Kannewurf C, Bastea M, Uher C, Kanatzidis M G 2000 Science 287 1024

    [7]

    Venkatasubramanian R, Siivola E, Colpitts T, O'Quinn B 2001 Nature 413 597

    [8]

    Zhao X B, Ji X H, Zhang Y H, Zhu T J, Tu J P, Zhang X B 2005 Appl. Phys. Lett. 86 062111

    [9]

    Jiang M B, Wu Z X, Zhou M, Huang R J, Li L F 2010 Acta Phys. Sin. 59 7314 (in Chinese) [蒋明波, 吴智雄, 周敏, 黄荣进, 李来风 2010 物理学报 59 7314]

    [10]

    Vineis C J, Shakouri A, Majumdar A, Kanatzidis M G 2010 Adv. Mater. 22 3970

    [11]

    Fan X A, Yang J Y, Xie Z, Li K, Zhu W, Duan X K, Xiao C J, Zhang Q Q 2007 J. Phys. D: Appl. Phys. 40 5975

    [12]

    Xu Y B, Ren Z M, Cao G H, Ren W L, Deng K, Zhong Y B 2009 Physica B 404 4029

    [13]

    Sun Z L, Liufu S C, Yao Q, Chen L D 2010 Mater. Chem. Phys. 121 138

    [14]

    Zhao Y M, Hughes R W, Su Z X, Zhou W Z, Gregory D H 2011 Angew. Chem. Int. Ed. 50 10397

    [15]

    Lu W G, Ding Y, Chen Y X, Wang Z L, Fang J Y 2005 J. Am. Chem. Soc. 127 10112

    [16]

    Poudel B, Hao Q, Ma Y, Lan Y C, Minnich A, Yu B, Yan X A, Wang D Z, Muto A, Vashaee D, Chen X Y, Liu J M, Dresselhaus M S, Chen G, Ren Z F 2008 Science 320 634

    [17]

    Liao S C, Mayo W E, Pae K D 1997 Acta Mater. 45 4027

    [18]

    Godwal B K, Jayaraman A, Meenakshi S 1998 Phys. Rev. B 57 773

    [19]

    Polvani D A, Meng J F, Shekar N V C, Sharp J, Badding J V 2001 Chem. Mater. 13 2068

    [20]

    Thonhauser T, Jeon G S, Mahan G D, Sofo J O 2003 Phys. Rev. B 68 205207

    [21]

    Thonhauser T, Scheidemantel T J, Sofo J O, Badding J V, Mahan G D 2003 Phys. Rev. B 68 085201

    [22]

    Ovsyannikov S V, Shchennikov V V 2010 Chem. Mater. 22 635

    [23]

    Liu W S, Yan X, Chen G, Ren Z F 2012 Nano Energy 1 42

    [24]

    Liu W S, Zhang Q Y, Lan Y C, Chen S, Yan X, Zhang Q, Wang H, Wang D Z, Chen G, Ren Z F 2011 Adv. Energy Mater. 1 577

    [25]

    Burstein E 1954 Phys. Rev. 93 632

    [26]

    Yu B L, Tang X F, Qi Q, Zhang Q 2004 Acta Phys. Sin. 53 3130 (in Chinese) [余柏林, 唐新峰, 祁琼, 张清 2004 物理学报 53 3130]

    [27]

    Lan Y C, Minnich A J, Chen G, Ren Z F 2010 Adv. Funct. Mater. 20 357

    [28]

    Wang S Y, Xie W J, Li H, Tang X F 2011 Intermetallics 19 1024

  • [1]

    Baxter J, Bian Z X, Chen G, Danielson D, Dresselhaus M S, Fedorov A G, Fisher T S, Jones C W, Maginn E, Kortshagen U, Manthiram A, Nozik A, Rolison D R, Sands T, Shi L, Sholl D, Wu Y Y 2009 Energ. Environ. Sci. 2 559

    [2]

    Wu S H, Ryosuke N, Masatsugu, Zhang Q S, Chihaya A 2014 Chin. Phys. B 23 098502

    [3]

    Liu N, Luo X G, Zhang M L 2014 Chin. Phys. B 23 080502

    [4]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105

    [5]

    Yang M J, Shen Q, Zhang L M 2011 Chin. Phys. B 20 106202

    [6]

    Chung D Y, Hogan T, Brazis P, Rocci-Lane M, Kannewurf C, Bastea M, Uher C, Kanatzidis M G 2000 Science 287 1024

    [7]

    Venkatasubramanian R, Siivola E, Colpitts T, O'Quinn B 2001 Nature 413 597

    [8]

    Zhao X B, Ji X H, Zhang Y H, Zhu T J, Tu J P, Zhang X B 2005 Appl. Phys. Lett. 86 062111

    [9]

    Jiang M B, Wu Z X, Zhou M, Huang R J, Li L F 2010 Acta Phys. Sin. 59 7314 (in Chinese) [蒋明波, 吴智雄, 周敏, 黄荣进, 李来风 2010 物理学报 59 7314]

    [10]

    Vineis C J, Shakouri A, Majumdar A, Kanatzidis M G 2010 Adv. Mater. 22 3970

    [11]

    Fan X A, Yang J Y, Xie Z, Li K, Zhu W, Duan X K, Xiao C J, Zhang Q Q 2007 J. Phys. D: Appl. Phys. 40 5975

    [12]

    Xu Y B, Ren Z M, Cao G H, Ren W L, Deng K, Zhong Y B 2009 Physica B 404 4029

    [13]

    Sun Z L, Liufu S C, Yao Q, Chen L D 2010 Mater. Chem. Phys. 121 138

    [14]

    Zhao Y M, Hughes R W, Su Z X, Zhou W Z, Gregory D H 2011 Angew. Chem. Int. Ed. 50 10397

    [15]

    Lu W G, Ding Y, Chen Y X, Wang Z L, Fang J Y 2005 J. Am. Chem. Soc. 127 10112

    [16]

    Poudel B, Hao Q, Ma Y, Lan Y C, Minnich A, Yu B, Yan X A, Wang D Z, Muto A, Vashaee D, Chen X Y, Liu J M, Dresselhaus M S, Chen G, Ren Z F 2008 Science 320 634

    [17]

    Liao S C, Mayo W E, Pae K D 1997 Acta Mater. 45 4027

    [18]

    Godwal B K, Jayaraman A, Meenakshi S 1998 Phys. Rev. B 57 773

    [19]

    Polvani D A, Meng J F, Shekar N V C, Sharp J, Badding J V 2001 Chem. Mater. 13 2068

    [20]

    Thonhauser T, Jeon G S, Mahan G D, Sofo J O 2003 Phys. Rev. B 68 205207

    [21]

    Thonhauser T, Scheidemantel T J, Sofo J O, Badding J V, Mahan G D 2003 Phys. Rev. B 68 085201

    [22]

    Ovsyannikov S V, Shchennikov V V 2010 Chem. Mater. 22 635

    [23]

    Liu W S, Yan X, Chen G, Ren Z F 2012 Nano Energy 1 42

    [24]

    Liu W S, Zhang Q Y, Lan Y C, Chen S, Yan X, Zhang Q, Wang H, Wang D Z, Chen G, Ren Z F 2011 Adv. Energy Mater. 1 577

    [25]

    Burstein E 1954 Phys. Rev. 93 632

    [26]

    Yu B L, Tang X F, Qi Q, Zhang Q 2004 Acta Phys. Sin. 53 3130 (in Chinese) [余柏林, 唐新峰, 祁琼, 张清 2004 物理学报 53 3130]

    [27]

    Lan Y C, Minnich A J, Chen G, Ren Z F 2010 Adv. Funct. Mater. 20 357

    [28]

    Wang S Y, Xie W J, Li H, Tang X F 2011 Intermetallics 19 1024

  • [1] 陈上峰, 孙乃坤, 张宪民, 王凯, 李武, 韩艳, 吴丽君, 岱钦. Mn3As2掺杂Cd3As2纳米结构的制备及热电性能. 物理学报, 2022, 71(18): 187201. doi: 10.7498/aps.71.20220584
    [2] 胡威威, 孙进昌, 张玗, 龚悦, 范玉婷, 唐新峰, 谭刚健. 利用晶体结构工程提升GeSe化合物热电性能的研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211843
    [3] 魏江涛, 杨亮亮, 魏磊, 秦源浩, 宋培帅, 张明亮, 杨富华, 王晓东. Si微/纳米带的制备与热电性能. 物理学报, 2021, 70(18): 187304. doi: 10.7498/aps.70.20210801
    [4] 邹平, 吕丹, 徐桂英. 高压烧结制备Tb掺杂n型(Bi1–xTbx)2(Te0.9Se0.1)3合金及其微结构和热电性能. 物理学报, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [5] 许易, 许小言, 张薇, 欧阳滔, 唐超. 多晶石墨烯纳米带热电性能的理论研究. 物理学报, 2019, 68(24): 247202. doi: 10.7498/aps.68.20191276
    [6] 张忻, 马旭颐, 张飞鹏, 武鹏旭, 路清梅, 刘燕琴, 张久兴. 纳米结构碲化铋合金的制备及电热输运特性. 物理学报, 2012, 61(4): 047201. doi: 10.7498/aps.61.047201
    [7] 吴子华, 谢华清. 聚对苯撑/LiNi0.5Fe2O4纳米复合热电材料的制备及其性能研究. 物理学报, 2012, 61(7): 076502. doi: 10.7498/aps.61.076502
    [8] 孙毅, 王春雷, 王洪超, 苏文斌, 刘剑, 彭华, 梅良模. 烧结温度对La0.1Sr0.9TiO3陶瓷热电性能的影响. 物理学报, 2012, 61(16): 167201. doi: 10.7498/aps.61.167201
    [9] 刘剑, 王春雷, 苏文斌, 王洪超, 张家良, 梅良模. Nb掺杂对还原性烧结的TiO2-陶瓷的晶体结构及热电性能的影响. 物理学报, 2011, 60(8): 087204. doi: 10.7498/aps.60.087204
    [10] 罗文辉, 李涵, 林泽冰, 唐新峰. Si含量对高锰硅化合物相组成及热电性能的影响研究. 物理学报, 2010, 59(12): 8783-8788. doi: 10.7498/aps.59.8783
    [11] 郭全胜, 李涵, 苏贤礼, 唐新峰. 熔体旋甩法制备p型填充式方钴矿化合物Ce0.3Fe1.5Co2.5Sb12的微结构及热电性能. 物理学报, 2010, 59(9): 6666-6672. doi: 10.7498/aps.59.6666
    [12] 王洪超, 王春雷, 苏文斌, 刘剑, 赵越, 彭华, 张家良, 赵明磊, 李吉超, 尹娜, 梅良模. 烧结温度对La0.9Sr0.1FeO3热电性能的影响. 物理学报, 2010, 59(5): 3455-3460. doi: 10.7498/aps.59.3455
    [13] 王善禹, 谢文杰, 李涵, 唐新峰. 熔体旋甩法合成n型(Bi0.85Sb0.15)2(Te1-xSex)3化合物的微结构及热电性能. 物理学报, 2010, 59(12): 8927-8933. doi: 10.7498/aps.59.8927
    [14] 苏贤礼, 唐新峰, 李涵. 熔体旋甩工艺对n型InSb化合物的微结构及热电性能的影响. 物理学报, 2010, 59(4): 2860-2866. doi: 10.7498/aps.59.2860
    [15] 曹卫强, 邓书康, 唐新峰, 李鹏. 熔体旋甩工艺对Zn掺杂Ⅰ-型Ba8Ga12Zn2Ge32笼合物微结构及热电性能的影响. 物理学报, 2009, 58(1): 612-618. doi: 10.7498/aps.58.612
    [16] 苏贤礼, 唐新峰, 李 涵, 邓书康. Ga填充n型方钴矿化合物的结构及热电性能. 物理学报, 2008, 57(10): 6488-6493. doi: 10.7498/aps.57.6488
    [17] 张轶群, 施 毅, 濮 林, 张 荣, 郑有炓. 纳米线阵列横向输运的热电特性研究. 物理学报, 2008, 57(8): 5198-5204. doi: 10.7498/aps.57.5198
    [18] 张 忻, 李 佳, 路清梅, 张久兴, 刘燕琴. (Bi1-x Agx)2(Te1-ySey)3粉体的机械合金化制备及其放电等离子烧结体的热电输运特性. 物理学报, 2008, 57(7): 4466-4470. doi: 10.7498/aps.57.4466
    [19] 蒋 俊, 李亚丽, 许高杰, 崔 平, 吴 汀, 陈立东, 王 刚. 制备工艺对p型碲化铋基合金热电性能的影响. 物理学报, 2007, 56(5): 2858-2862. doi: 10.7498/aps.56.2858
    [20] 蒋 俊, 许高杰, 崔 平, 陈立东. TeI4掺杂量对n型Bi2Te3基烧结材料热电性能的影响. 物理学报, 2006, 55(9): 4849-4853. doi: 10.7498/aps.55.4849
计量
  • 文章访问数:  4597
  • PDF下载量:  461
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-24
  • 修回日期:  2014-09-26
  • 刊出日期:  2015-02-05

/

返回文章
返回