搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁电半导体耦合光伏器件的历史与最新进展

杨彪 刘向鑫 李辉

引用本文:
Citation:

铁电半导体耦合光伏器件的历史与最新进展

杨彪, 刘向鑫, 李辉

History and latest development of ferroelectric-semiconductor coupled photovoltaic devices

Yang Biao, Liu Xiang-Xin, Li Hui
PDF
导出引用
  • 本文介绍了新型铁电-半导体耦合光伏器件的发展历史和现状, 阐述了所观察到的非经典行为, 即开路电压在直流偏置电场控制下的迟滞的现象. 将之与含有光诱导偶极子场的有机光伏器件和量子点电池、压电光电子器件、铁电光伏器件、钙钛矿电池等进行比较, 发现偶极子极化电场在多种光伏器件中均存在, 甚至可能起到主导作用. 因此, 提出了偶极子场半导体器件的概念, 期望从更广义的范围涵盖结场型器件和非结场型偶极子器件, 为促进光伏发电领域更多的创新提供思路.
    This paper introduces the history and current research status of the novel ferroelectric-semiconductor coupled photovoltaic devices, in which a ferroelectric field of polarized dipoles from nanoparticles separates the photogenerated carriers. Fabrication of such devices by combining a CdS nanodipole and a CdTe absorber via a feasible method is described, which involves a phase segregation process of CdS from a CdS-CdTe pseudobinary system. An irregular behavior is observed on this type of devices, i.e. the hysteresis of open circuit voltage due to external bias of direct-current (DC) electric field. Other macroscopic and microscopic evidences of the dipole field photovoltaic effect are also described. Meanwhile, similar photovoltaic mechanism observed in other types of solar cells are also discussed, such as organic photovoltaic devices and quantum dot devices with photo-induced dipole polarization field, piezo-phototronic devices, ferroelectric photovoltaic devices, as well as perovskite solar cells. It is apparent that the polarization field of dipoles not only exists in the various types of photovoltaic devices, but also may dominate the behavior of devices. Therefore, we propose that a new concept of dipole field semiconductor devices could be properly used to explain the photovoltaic behavior of both junctional and un-junctional devices. The junctional devices could function with either pn junction or Schottky junction, while the un-junctional devices include all the devices mentioned above. We expect that various innovation should be inspired by this concept in photovoltaic community.
    • 基金项目: 国家自然科学基金(批准号: 61274060, 51472239)、中国科学院电工研究所所科研基金(批准号: Y110471CSB)、中国科学院百人计划择优支持项目(批准号: Y210431C41)和中国科学院创新交叉团队项目资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274060, 51472239), the Research Foundation of IEE, CAS (Grant No. Y110471CSB), the 100 Talents Preferred Support Program of the CAS (Grant No. Y210431C41), and the Chinese Academy of Sciences Innovative and Interdisciplinary Team Award–“High-efficiency Utilization of Renewable Energy Resources Innovative and Interdisciplinary Team”.
    [1]

    Yu G, Gao J, Hummelen J C, Wudi F, Heeger A J 1995 Science-AAAS-Weekly Paper Edition 270 1789

    [2]

    O'regan B, Grfitzeli M 1991 nature 353 737

    [3]

    Shvydka D, Karpov V G 2008 Appl. Phys. Lett. 92 053507

    [4]

    Shvydka D, Karpov V G 2008 33th IEEE Photovoltaic Specialists Conference San Diego, CA, USA, May 11-16 2008 p1

    [5]

    Shvydka D, Karpov V G 2009 US Patent 2009094366

    [6]

    Jha R, Liu X, Wieland K, Ordosgoitti J, Paudel.N, Sun K, Commpaan A 2010 MRS Spring Meeting San Francisco, CA, USA, April 26, 2010 p1260

    [7]

    McCandless B E, Hanket G M, Jensen D G, Birkmire R W 2002 J. Vac. Sci. Technol. A 20 1462

    [8]

    Huang F, Liu X 2013 Appl.Phys. Lett. 102 103501

    [9]

    Huang F, Liu X, Wang W 2013 Prog. Photovolt: Res. Appl. DOI: 10.1002/pip.2432

    [10]

    Schmidt M E, Blanton S A, Hines M A, Guyot-Sionnest P 1997 J. Chem. Phys. 106 5254

    [11]

    Blanton S A, Leheny R L, Hines M A, Guyot-Sionnest P. 1997 Phys. Rev. Lett. 79 865

    [12]

    Shim M, Guyot-Sionnest P 1999 J. Chem. Phys. 111 6955

    [13]

    Zhang X, Zhang Z, Glotzer S C 2007 J. Chem. Phys. C 111 4132

    [14]

    Nalwa K S, Carr J A, Mahadevapuram R C, Kodali H K, Bose S, Chen Y Q, Petrich J W, Ganapathysubramanian B, Chaudhary S 2012 Energy Environ. Sci. 5 7042

    [15]

    Garbugli M, Porro M, Roiati V, Rizzo A, Gigli G, Petrozza A, Lanzani G 2012 Nanoscale 4 1728

    [16]

    Zi Li, Xu Zhang, Gang Lu 2012 J. Phys. Chem. C 116 9845

    [17]

    Buhbut S, Itzhakov S, Hod I, Oron D, Zaban A 2013 Nano Lett. 13 4456

    [18]

    Pan Z W, Dai Z R, Wang Z L 2001 Science 291 1947

    [19]

    Lu W, Lieber C M 2006 J. Phys. D. Appl. Phys. 39 387

    [20]

    Wang Z L 2008 Adv. Funct. Mater. 18 3553

    [21]

    Wang Z L 2007 Adv. Mater. 19 889

    [22]

    Wang Z L 2009 Materials Science and Engineering: Reports 64 33

    [23]

    Wang Z L 2010 J. Phys. Chem. Lett. 1 1388

    [24]

    Wang Z L, Song J 2006 Science 312.242

    [25]

    Wang X, Song J, Liu J, Wang Z L 2007 Science 316 102.

    [26]

    Qin Y, Wang X, Wang Z L 2008 Nature 451 809

    [27]

    Wang X, Wang X, Zhou J, Hui J, Liu J, Xu N S, Wang Z L 2006 Nano. Lett. 6 2768

    [28]

    He J H, Hsin C L, Liu J, Chen L J, Wang Z L 2007 Adv. Mater. 19 781

    [29]

    Lao C S, Kuang Q, Wang Z L, Pack M C, Deng Y L 2007 Appl. Phys. Lett 90 262107

    [30]

    Zhang Y, Yang Y, Wang Z L 2012 Energy Environ. Sci. 5 50

    [31]

    Zhang Y, Liu Y, Wang Z L 2011 Adv. Mater 23 3004

    [32]

    Grekov A A, Malitskaya M A, Spitsyna V D 1970 Sov. Phys. Crystallogr 15 423

    [33]

    Volk T R, Grekov A A, Kosonogov N A, Fridkin V M 1973 Sov. Phys. Solid State 14 2740

    [34]

    Stefanovich S Y, Malhasyan S S, Venevtsev Y N 1980 Ferroelectrics 29 59

    [35]

    Fridkin V M, Popov B N, Verkhovskaya K A 1978 Appl. Phys. 16 313

    [36]

    Fridkin V M, Popov B N 1978 Soviet Physics Uspekhi 21 981

    [37]

    Kraut W, Baltz R 1979 Phys. Rev. B 19 1548

    [38]

    Presting H, Von Baltz R 1982 Phys.Status.Solidi. B 112 559

    [39]

    Cho Y W, Choi S K, Vysochanskii Y M 2001 J. Mater. Res. 16 3317

    [40]

    Qin M, Yao K, Liang Y C 2009 Appl.Phys.Lett. 95 022912

    [41]

    Qin M, Yao K, Liang Y C 2008 Appl. Phys. Lett. 93 122904

    [42]

    Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 324 63

    [43]

    Seidel J, Fu D, Yang S Y, Alarcón-Lladó.E, Wu J X, Ramesh R, Ager J W 2011 Phys. Rev. Lett. 107 126805.

    [44]

    Studenyak I P, Mitrovcij V V, Kovacs G S 2001 Ferroelectrics 254 295

    [45]

    Gu B, Wang Y, Wang J, Ji W 2009 Opt.Express 17 10970

    [46]

    Huang H 2010 Nat.Photonics 4 134

    [47]

    Lee M, Teuscher J, Miyasaka T, Murakami T, Snaith H 2012 Science 338 643

    [48]

    Shi J, Dong J, Lv S, Xu Y, Zhu L, Xiao J, Xu X, Wu H, Li D, Luo Y, Meng Q 2014 Appl. Phys. Lett. 104 063901

    [49]

    Snaith H, Abate A, Ball J, Eperon G, Leijtens T, Noel N, Stranks S Wang J T, Wojciechowski K, Zhang W 2014 J. Phy. Chem. Lett. 5 1511

    [50]

    Gottesman R, Haltzi E, Gouda L, Tirosh S, Bouhadana Y, Zaban A 2014 J. Phy. Chem. Lett. 5 2662

    [51]

    Nayak P, Bisquert J, Cahen D 2011 Adv. Mater. 23 2870

    [52]

    Hodes G 2013 Science 342 317

    [53]

    Lee M, Teuscher J, Miyasaka T, Murakami T, Snaith H 2012 Science 338 643

    [54]

    Edri E, Kirmayer S, Cahen D, Hodes G 2013 J. Phys. Chem. Lett. 4 897

  • [1]

    Yu G, Gao J, Hummelen J C, Wudi F, Heeger A J 1995 Science-AAAS-Weekly Paper Edition 270 1789

    [2]

    O'regan B, Grfitzeli M 1991 nature 353 737

    [3]

    Shvydka D, Karpov V G 2008 Appl. Phys. Lett. 92 053507

    [4]

    Shvydka D, Karpov V G 2008 33th IEEE Photovoltaic Specialists Conference San Diego, CA, USA, May 11-16 2008 p1

    [5]

    Shvydka D, Karpov V G 2009 US Patent 2009094366

    [6]

    Jha R, Liu X, Wieland K, Ordosgoitti J, Paudel.N, Sun K, Commpaan A 2010 MRS Spring Meeting San Francisco, CA, USA, April 26, 2010 p1260

    [7]

    McCandless B E, Hanket G M, Jensen D G, Birkmire R W 2002 J. Vac. Sci. Technol. A 20 1462

    [8]

    Huang F, Liu X 2013 Appl.Phys. Lett. 102 103501

    [9]

    Huang F, Liu X, Wang W 2013 Prog. Photovolt: Res. Appl. DOI: 10.1002/pip.2432

    [10]

    Schmidt M E, Blanton S A, Hines M A, Guyot-Sionnest P 1997 J. Chem. Phys. 106 5254

    [11]

    Blanton S A, Leheny R L, Hines M A, Guyot-Sionnest P. 1997 Phys. Rev. Lett. 79 865

    [12]

    Shim M, Guyot-Sionnest P 1999 J. Chem. Phys. 111 6955

    [13]

    Zhang X, Zhang Z, Glotzer S C 2007 J. Chem. Phys. C 111 4132

    [14]

    Nalwa K S, Carr J A, Mahadevapuram R C, Kodali H K, Bose S, Chen Y Q, Petrich J W, Ganapathysubramanian B, Chaudhary S 2012 Energy Environ. Sci. 5 7042

    [15]

    Garbugli M, Porro M, Roiati V, Rizzo A, Gigli G, Petrozza A, Lanzani G 2012 Nanoscale 4 1728

    [16]

    Zi Li, Xu Zhang, Gang Lu 2012 J. Phys. Chem. C 116 9845

    [17]

    Buhbut S, Itzhakov S, Hod I, Oron D, Zaban A 2013 Nano Lett. 13 4456

    [18]

    Pan Z W, Dai Z R, Wang Z L 2001 Science 291 1947

    [19]

    Lu W, Lieber C M 2006 J. Phys. D. Appl. Phys. 39 387

    [20]

    Wang Z L 2008 Adv. Funct. Mater. 18 3553

    [21]

    Wang Z L 2007 Adv. Mater. 19 889

    [22]

    Wang Z L 2009 Materials Science and Engineering: Reports 64 33

    [23]

    Wang Z L 2010 J. Phys. Chem. Lett. 1 1388

    [24]

    Wang Z L, Song J 2006 Science 312.242

    [25]

    Wang X, Song J, Liu J, Wang Z L 2007 Science 316 102.

    [26]

    Qin Y, Wang X, Wang Z L 2008 Nature 451 809

    [27]

    Wang X, Wang X, Zhou J, Hui J, Liu J, Xu N S, Wang Z L 2006 Nano. Lett. 6 2768

    [28]

    He J H, Hsin C L, Liu J, Chen L J, Wang Z L 2007 Adv. Mater. 19 781

    [29]

    Lao C S, Kuang Q, Wang Z L, Pack M C, Deng Y L 2007 Appl. Phys. Lett 90 262107

    [30]

    Zhang Y, Yang Y, Wang Z L 2012 Energy Environ. Sci. 5 50

    [31]

    Zhang Y, Liu Y, Wang Z L 2011 Adv. Mater 23 3004

    [32]

    Grekov A A, Malitskaya M A, Spitsyna V D 1970 Sov. Phys. Crystallogr 15 423

    [33]

    Volk T R, Grekov A A, Kosonogov N A, Fridkin V M 1973 Sov. Phys. Solid State 14 2740

    [34]

    Stefanovich S Y, Malhasyan S S, Venevtsev Y N 1980 Ferroelectrics 29 59

    [35]

    Fridkin V M, Popov B N, Verkhovskaya K A 1978 Appl. Phys. 16 313

    [36]

    Fridkin V M, Popov B N 1978 Soviet Physics Uspekhi 21 981

    [37]

    Kraut W, Baltz R 1979 Phys. Rev. B 19 1548

    [38]

    Presting H, Von Baltz R 1982 Phys.Status.Solidi. B 112 559

    [39]

    Cho Y W, Choi S K, Vysochanskii Y M 2001 J. Mater. Res. 16 3317

    [40]

    Qin M, Yao K, Liang Y C 2009 Appl.Phys.Lett. 95 022912

    [41]

    Qin M, Yao K, Liang Y C 2008 Appl. Phys. Lett. 93 122904

    [42]

    Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 324 63

    [43]

    Seidel J, Fu D, Yang S Y, Alarcón-Lladó.E, Wu J X, Ramesh R, Ager J W 2011 Phys. Rev. Lett. 107 126805.

    [44]

    Studenyak I P, Mitrovcij V V, Kovacs G S 2001 Ferroelectrics 254 295

    [45]

    Gu B, Wang Y, Wang J, Ji W 2009 Opt.Express 17 10970

    [46]

    Huang H 2010 Nat.Photonics 4 134

    [47]

    Lee M, Teuscher J, Miyasaka T, Murakami T, Snaith H 2012 Science 338 643

    [48]

    Shi J, Dong J, Lv S, Xu Y, Zhu L, Xiao J, Xu X, Wu H, Li D, Luo Y, Meng Q 2014 Appl. Phys. Lett. 104 063901

    [49]

    Snaith H, Abate A, Ball J, Eperon G, Leijtens T, Noel N, Stranks S Wang J T, Wojciechowski K, Zhang W 2014 J. Phy. Chem. Lett. 5 1511

    [50]

    Gottesman R, Haltzi E, Gouda L, Tirosh S, Bouhadana Y, Zaban A 2014 J. Phy. Chem. Lett. 5 2662

    [51]

    Nayak P, Bisquert J, Cahen D 2011 Adv. Mater. 23 2870

    [52]

    Hodes G 2013 Science 342 317

    [53]

    Lee M, Teuscher J, Miyasaka T, Murakami T, Snaith H 2012 Science 338 643

    [54]

    Edri E, Kirmayer S, Cahen D, Hodes G 2013 J. Phys. Chem. Lett. 4 897

  • [1] 王静, 高姗, 段香梅, 尹万健. 钙钛矿太阳能电池材料缺陷对器件性能与稳定性的影响. 物理学报, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [2] 罗攀, 李响, 孙学银, 谭骁洪, 罗俊, 甄良. 新型空间太阳能电池用的钙钛矿薄膜与器件的电子辐照效应. 物理学报, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [3] 朱晓丽, 仇鹏, 卫会云, 何荧峰, 刘恒, 田丰, 邱洪宇, 杜梦超, 彭铭曾, 郑新和. GaN基半导体在改变钙钛矿太阳能电池性能方面的理论分析. 物理学报, 2023, 72(10): 107702. doi: 10.7498/aps.72.20230100
    [4] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制. 物理学报, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [5] 刘辉城, 许佳雄, 林俊辉. Si衬底Cu2ZnSnS4太阳能电池的数值分析. 物理学报, 2021, 70(10): 108801. doi: 10.7498/aps.70.20201936
    [6] 李晔, 王茜茜, 卫会云, 仇鹏, 何荧峰, 宋祎萌, 段彰, 申诚涛, 彭铭曾, 郑新和. 原子层沉积的超薄InN强化量子点太阳能电池的界面输运. 物理学报, 2021, 70(18): 187702. doi: 10.7498/aps.70.20210554
    [7] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [8] 张翱, 张春秀, 陈云琳, 张春梅, 孟涛. 反式卤素钙钛矿太阳能电池光伏性能的理论研究. 物理学报, 2020, 69(11): 118801. doi: 10.7498/aps.69.20200089
    [9] 夏俊民, 梁超, 邢贵川. 喷墨打印钙钛矿太阳能电池研究进展与展望. 物理学报, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [10] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [11] 刘志方, 赵谡玲, 徐征, 杨倩倩, 赵玲, 刘志民, 陈海涛, 杨一帆, 高松, 徐叙瑢. 利用Ag2O/PEDOT:PSS复合缓冲层提高P3HT:PCBM聚合物太阳能电池器件性能的研究. 物理学报, 2014, 63(6): 068402. doi: 10.7498/aps.63.068402
    [12] 孙凯, 何志群, 梁春军. 多温度阶梯退火对有机聚合物太阳能电池器件性能的影响. 物理学报, 2014, 63(4): 048801. doi: 10.7498/aps.63.048801
    [13] 刘震, 王玉晓, 宋瑛林, 张学如. 纳米表面二维周期半圆凹槽增强硅薄膜太阳能电池光吸收. 物理学报, 2013, 62(16): 167801. doi: 10.7498/aps.62.167801
    [14] 李国龙, 何力军, 李进, 李学生, 梁森, 高忙忙, 袁海雯. 纳米银增强聚合物太阳能电池光吸收的研究. 物理学报, 2013, 62(19): 197202. doi: 10.7498/aps.62.197202
    [15] 王玉玲, 孙以泽, 彭乐乐, 徐洋. 基于Lambert W函数的太阳能电池组件参数确定法. 物理学报, 2012, 61(24): 248402. doi: 10.7498/aps.61.248402
    [16] 潘惠平, 薄连坤, 黄太武, 张毅, 于涛, 姚淑德. 铜铟镓硒太阳能电池多层膜的结构分析. 物理学报, 2012, 61(22): 228801. doi: 10.7498/aps.61.228801
    [17] 郝志红, 胡子阳, 张建军, 郝秋艳, 赵颖. 掺杂PEDOT ∶PSS对聚合物太阳能电池性能影响的研究. 物理学报, 2011, 60(11): 117106. doi: 10.7498/aps.60.117106
    [18] 李艳武, 刘彭义, 侯林涛, 吴冰. Rubrene作电子传输层的异质结有机太阳能电池. 物理学报, 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
    [19] 邢宏伟, 彭应全, 杨青森, 马朝柱, 汪润生, 李训栓. 有机体异质结太阳能电池的数值分析. 物理学报, 2008, 57(11): 7374-7379. doi: 10.7498/aps.57.7374
    [20] 郝会颖, 孔光临, 曾湘波, 许 颖, 刁宏伟, 廖显伯. 非晶/微晶相变域硅薄膜及其太阳能电池. 物理学报, 2005, 54(7): 3327-3331. doi: 10.7498/aps.54.3327
计量
  • 文章访问数:  6803
  • PDF下载量:  1606
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-20
  • 修回日期:  2014-12-13
  • 刊出日期:  2015-02-05

/

返回文章
返回