搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ka波段带状注相对论扩展互作用速调管放大器的分析与设计

刘振帮 赵欲聪 黄华 金晓 雷禄容

引用本文:
Citation:

Ka波段带状注相对论扩展互作用速调管放大器的分析与设计

刘振帮, 赵欲聪, 黄华, 金晓, 雷禄容

Analysis and design of a Ka-band sheet beam relativistic extended interaction klystron amplifier

Liu Zhen-Bang, Zhao Yu-Cong, Huang Hua, Jin Xiao, Lei Lu-Rong
PDF
导出引用
  • 带状注相对论扩展互作用速调管放大器是一种高功率、高频率的微波毫米波放大型器件, 具有广阔的应用前景. 本文分析了扩展互作用结构多间隙谐振腔的渡越时间效应, 推导了2π模场情况下谐振腔的能量交换系数和电子负载电导, 且通过计算表明工作在2π模式三间隙腔的电子负载电导是单间隙腔的9倍左右, 多间隙结构有利于提高器件效率. 利用三维粒子仿真软件, 对工作在Ka波段的带状注相对论扩展互作用速调管放大器进行了模拟研究, 采用宽高比为30:1的带状电子束以降低空间电荷效应, 在电子束电压为500 kV, 束流为1 kA, 轴向引导磁感应强度为0.8 T的情况下, 器件输出微波功率为190 MW, 频率为40 GHz, 器件效率为38%, 器件增益为69 dB.
    The sheet beam klystron is a kind of novel powerful microwave and millimeter-wave vacuum electron device, in which used is a thin rectangular sheet beam with high aspect ratio in order to improve beam-wave interaction efficiency by improving space-charge-limiting current of electron beam and obtaining big electric current, and it has many actual and potential applications. Based on the motion of the single electron under the small signal condition, the transit-time effect of electron beam in 2π-mode standing wave electric field in a multiple-cavity resonator is investigated, the expression of electron load conductance in a multiple-cavity resonator is presented, and the influence of the cavity number N on transit-time effect in a multiple-cavity resonator is discussed. The high frequency characteristics of the three-gap extended cavity are studied. The abilities for the single-gap cavity and three-gap cavity to modulate the sheet beam are compared by 3D PIC simulation. The simulation result shows that the three-gap extended interaction cavity operating at 2πmode is better than the single-gap cavity. The electron load conductance is derived and corrected based on the theory of relativity, by which a more accurate relation of electron load conductance to transmit angle can be obtained. In order to improve the output power and electron efficiency, the three-gap extended output cavity is used in the relativistic klystron to replace the single gap output cavity. By using the electromagnetic simulation software and 3D PIC code, a Ka-band sheet beam relativistic extended interaction klystron amplifie is designed. A sheet electron beam with a width-to-height ratio of 30 is adopted to reduce the space charge effect. In the PIC simulation, when the beam voltage is 500 kV and current is 1 kA, the device can generate a 190 MW output power at 40 GHz with an efficiency of 38% and a gain of 69 dB. The 3 dB bandwidth of the EISBK is about 150 MHz. Meanwhile, the output microwave is without the clutter jamming, which makes the contribution avoid the shrinkage of output microwave impulse. This study is of great importance for the physical design and process in engineering of the Ka-band sheet beam extended interaction relativistic klystron amplifier.
    • 基金项目: 国家自然科学基金(批准号: 11475158)、高功率微波技术重点实验室基金(批准号: HAK-2014HPM-05)和中国物理研究院科学发展基金(批准号: 2014B0402068)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11475158), the Science Foundation of Science and Technology on High Power Microwave Laboratory, China (Grant No. HAK-2014HPM-05), and the Science Foundation of China Academy of Engineering Physics (Grant No. 2014B0402068).
    [1]

    Benford J, Swegle J A 2008 High Power Microwave (2nd Ed.) (translated by Jiang W H, Zhang C) (Beijing: National Defense Industry Press) pp35-92 (in Chinese) [Benford J, Swegle J A 2008 高功率微波(第二版)(中译本) (江伟华, 张弛 译) (北京: 国防工业出版社)第35-92页]

    [2]

    Robert J B, Edl S 2005 High Power Microwave Sources and Technologies (translated by group of High Power Microwave Sources and Technologies) (Beijing: Tsinghua University Press) pp57-63 (in Chinese) [Robert J B, Edl S 2005高功率微波源与技术(中译本) (高功率微波源与技术翻译组译) (北京: 清华大学出版社)第57-63页]

    [3]

    Roitman A, Berry D, Steer B 2005 IEEE Trans. Electron Dev. 52 895

    [4]

    Liu L W, Wei Y Y, Wang S M 2013 Chin. Phys. B 22 108401

    [5]

    Luo J R, Cui J, Zhu M, Guo W 2013 Chin. Phys. B 22 067803

    [6]

    Ding Y G 2010 Theory and Computer Simulation of High Power Klystron (Beijing: National Defense Industry Press) pp57-60 (in Chinese) [丁耀根 2008 大功率速调管的理论与设计模拟(北京: 国防科技工业出版社) 第57-60页]

    [7]

    Zhang K C, Wu Z H, Liu S G 2008 Chin. Phys. B 17 3402

    [8]

    Shin Y M, Barnett L R, Luhmann N C 2009 IEEE Trans. Electron Dev. 56 3196

    [9]

    Fan Z K, Liu Q X, Liu X S 1999 High Power Laser Particle Beams 11 482 (in Chinese) [范植开, 刘庆想, 刘锡三 1999 强激光与粒子束 11 482]

    [10]

    Xie J L, Zhao Y X 1996 Bunching Theory of Klystron (Beijing: Science Press) pp63-70, 73-75, 206-208 (in Chinese) [谢家麟, 赵永翔1996 速调管群聚理论(北京: 科学出版社) 第63-70, 73-75, 206-208页]

    [11]

    Polevin S D, Korovin S D, Kovalchuk B M, Karlik K V 2004 Proceedings of 13th International Symposium on High Current Electronics 13 246

  • [1]

    Benford J, Swegle J A 2008 High Power Microwave (2nd Ed.) (translated by Jiang W H, Zhang C) (Beijing: National Defense Industry Press) pp35-92 (in Chinese) [Benford J, Swegle J A 2008 高功率微波(第二版)(中译本) (江伟华, 张弛 译) (北京: 国防工业出版社)第35-92页]

    [2]

    Robert J B, Edl S 2005 High Power Microwave Sources and Technologies (translated by group of High Power Microwave Sources and Technologies) (Beijing: Tsinghua University Press) pp57-63 (in Chinese) [Robert J B, Edl S 2005高功率微波源与技术(中译本) (高功率微波源与技术翻译组译) (北京: 清华大学出版社)第57-63页]

    [3]

    Roitman A, Berry D, Steer B 2005 IEEE Trans. Electron Dev. 52 895

    [4]

    Liu L W, Wei Y Y, Wang S M 2013 Chin. Phys. B 22 108401

    [5]

    Luo J R, Cui J, Zhu M, Guo W 2013 Chin. Phys. B 22 067803

    [6]

    Ding Y G 2010 Theory and Computer Simulation of High Power Klystron (Beijing: National Defense Industry Press) pp57-60 (in Chinese) [丁耀根 2008 大功率速调管的理论与设计模拟(北京: 国防科技工业出版社) 第57-60页]

    [7]

    Zhang K C, Wu Z H, Liu S G 2008 Chin. Phys. B 17 3402

    [8]

    Shin Y M, Barnett L R, Luhmann N C 2009 IEEE Trans. Electron Dev. 56 3196

    [9]

    Fan Z K, Liu Q X, Liu X S 1999 High Power Laser Particle Beams 11 482 (in Chinese) [范植开, 刘庆想, 刘锡三 1999 强激光与粒子束 11 482]

    [10]

    Xie J L, Zhao Y X 1996 Bunching Theory of Klystron (Beijing: Science Press) pp63-70, 73-75, 206-208 (in Chinese) [谢家麟, 赵永翔1996 速调管群聚理论(北京: 科学出版社) 第63-70, 73-75, 206-208页]

    [11]

    Polevin S D, Korovin S D, Kovalchuk B M, Karlik K V 2004 Proceedings of 13th International Symposium on High Current Electronics 13 246

  • [1] 曾造金, 马乔生, 胡林林, 蒋艺, 胡鹏, 雷文强, 马国武, 陈洪斌. W波段带状注扩展互作用速调管放大器的理论研究与数值模拟. 物理学报, 2019, 68(24): 248401. doi: 10.7498/aps.68.20190907
    [2] 曾造金, 马乔生, 胡林林, 蒋艺, 胡鹏, 陈洪斌. G波段扩展互作用速调管的理论分析与设计. 物理学报, 2019, 68(15): 154102. doi: 10.7498/aps.68.20190264
    [3] 薛智浩, 刘濮鲲, 杜朝海. W波段螺旋波纹波导回旋行波管注波互作用的非线性分析. 物理学报, 2014, 63(8): 080201. doi: 10.7498/aps.63.080201
    [4] 陈姝媛, 阮存军, 王勇. 带状注速调管多间隙扩展互作用输出腔等效电路的研究. 物理学报, 2014, 63(2): 028402. doi: 10.7498/aps.63.028402
    [5] 张轶, 达新宇. 基于差分平稳时序的Ka波段雨衰预测. 物理学报, 2014, 63(6): 060203. doi: 10.7498/aps.63.060203
    [6] 蔡杰, 季乐, 杨盛志, 张在强, 刘世超, 李艳, 王晓彤, 关庆丰. 强流脉冲电子束作用下金属锆的微观结构与应力状态. 物理学报, 2013, 62(15): 156106. doi: 10.7498/aps.62.156106
    [7] 陈永东, 吴洋, 谢鸿全, 李正红, 周自刚. 相对论速调管中间腔与调制电子束间的非线性互作用. 物理学报, 2013, 62(10): 104104. doi: 10.7498/aps.62.104104
    [8] 薛智浩, 刘濮鲲, 杜朝海, 李铮迪. W波段螺旋波纹波导回旋行波管注波互作用的非线性分析. 物理学报, 2012, 61(17): 170201. doi: 10.7498/aps.61.170201
    [9] 陈晔, 赵鼎, 王勇. 介质加载的矩形截面Cerenkov脉塞中带状电子注与慢波结构互作用的研究. 物理学报, 2012, 61(9): 094102. doi: 10.7498/aps.61.094102
    [10] 吴洋, 许州, 周霖, 李文君, 唐传祥. W波段扩展互作用速调管放大器的模拟与设计. 物理学报, 2012, 61(22): 224101. doi: 10.7498/aps.61.224101
    [11] 关庆丰, 顾倩倩, 李艳, 邱冬华, 彭冬晋, 王雪涛. 强流脉冲电子束作用下金属纯Cu的微观结构状态变形结构. 物理学报, 2011, 60(8): 086106. doi: 10.7498/aps.60.086106
    [12] 郭建华, 喻胜, 李宏福, 张天钟, 雷朝军, 李想, 张颜颜. 回旋速调管注波互作用瞬态非线性理论与模型研究. 物理学报, 2011, 60(9): 090301. doi: 10.7498/aps.60.090301
    [13] 张小锋, 阮存军, 罗积润, 阮望, 赵鼎. 带状注速调管注波互作用及其计算程序的研究. 物理学报, 2011, 60(6): 068402. doi: 10.7498/aps.60.068402
    [14] 刘振帮, 黄华, 金晓, 陈怀璧. X波段三重轴相对论速调管放大器的设计. 物理学报, 2011, 60(12): 128402. doi: 10.7498/aps.60.128402
    [15] 杜广星, 钱宝良. 准矩形截面强流相对论带状电子束的传输. 物理学报, 2010, 59(7): 4626-4633. doi: 10.7498/aps.59.4626
    [16] 王彦, 沈波, Dierre Benjamin, Sekiguchi Takashi, 许福军. 氢化作用对低能电子束辐照下GaN发光演变的影响. 物理学报, 2009, 58(11): 7864-7868. doi: 10.7498/aps.58.7864
    [17] 赵 鼎, 丁耀根, 王 勇. 速调管2.5维非线性注波互作用程序的研究. 物理学报, 2007, 56(6): 3324-3331. doi: 10.7498/aps.56.3324
    [18] 巩华荣, 宫玉彬, 魏彦玉, 唐昌建, 薛东海, 王文祥. 考虑到束-波相互作用的速调管离子噪声二维模拟. 物理学报, 2006, 55(10): 5368-5374. doi: 10.7498/aps.55.5368
    [19] 王平山, 余少英, 雷芳燕, 罗 敏, 马乔生, 谭 杰, 顾秉林. 导电栅网对相对论速调管中电子束的约束作用. 物理学报, 1998, 47(3): 485-493. doi: 10.7498/aps.47.485
    [20] 沈文达, 朱莳通. 库仑相互作用对相对论性电子束受激散射的影响. 物理学报, 1982, 31(2): 234-236. doi: 10.7498/aps.31.234
计量
  • 文章访问数:  4910
  • PDF下载量:  451
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-29
  • 修回日期:  2014-11-28
  • 刊出日期:  2015-05-05

/

返回文章
返回