搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

探索基于人工超晶格LaFeO3-YMnO3和自然超晶格n-LaFeO3-Bi4Ti3O12薄膜多铁性

陈延彬 张帆 张伦勇 周健 张善涛 陈延峰

引用本文:
Citation:

探索基于人工超晶格LaFeO3-YMnO3和自然超晶格n-LaFeO3-Bi4Ti3O12薄膜多铁性

陈延彬, 张帆, 张伦勇, 周健, 张善涛, 陈延峰

Exploring multiferroic materials based on artificial superlattice LaFeO3-YMnO3 and natural superlattice n-LaFeO3-Bi4Ti3O12 thin films

Chen Yan-Bin, Zhang Fan, Zhang Lun-Yong, Zhou Jian, Zhang Shan-Tao, Chen Yan-Feng
PDF
导出引用
  • 基于纳米尺寸下复合铁电材料和反铁磁性材料是一个探索多铁性材料有效的方法. 利用激光脉冲沉积制备出LaFeO3-YMnO3人工超晶格和掺入不同层LaFeO3, BiFeO3的Bi4Ti3O12的外延薄膜. 通过系统的X射线衍射、透射电子显微术、扫描透射电子显微术下的能量损失谱表征证明这些样品具有原子尺寸上清晰的界面和完整的层状结构. 磁性测试证明这些材料具有亚铁磁性. 特别是在0.5和1.5LaFeO3-Bi4Ti3O12中的亚铁磁性甚至能保持到室温. 就铁电性而言, 铁电性测试显示出LaFeO3-YMnO3和插入BiFeO3的Bi4Ti3O12样品中存在较大的漏电流, 而在0.5LaFeO3-Bi4Ti3O12样品中存在铁电性. 因此在0.5LaFeO3-Bi4Ti3O12中能够实现亚铁磁和铁电共存. 其次发现当掺入多层的钙钛矿(3层SrTiO3或2.5层LaFeO3)后, Bi4Ti3O12 的层状结构将出现结构失稳现象. 这些工作对于利用纳米复合开发新颖多铁性提供一些实例.
    Combining ferroelectric with antiferromagentic materials in nanometer scale is an effective method for exploring multiferroic materials. We preflent two kinds of systems to show the possibility of multiferroic properties in such nanometer composites. One is the artificial superlattice LaFeO3-YMnO3, and the other is the natural layered Aurivillius material Bi4Ti3O12 doped with different layers of LaFeO3, BiFeO3. Both materials were synthesized by pulsed laser deposition method on SrTiO3 substrates. Microstructural charterizations with XRD, TEM, and EELS in scanning transmission electron microscopy mode substantiate that the samples have atomically sharp interfaces between neighboring layers; this is important for producing possible magneto-electric coupling in multiferroic materials. Magnetic characterization proves that these materials have ferrimagnetic properties, in spite of their anti-ferromagnetic nature before coupling. Magnetic characterization also proves that there is 0.55-0.9 B remanant magnetization generated at LaFeO3-YMnO3 interface. And the 0.5 and 1.5LaFeO3-Bi4Ti3O12 samples show ferrimagnetism which can remain even up to room temperature. Ferroelectric tests prove that there is a large leakage current in LaFeO3-YMnO3 superlattice and BiFeO3-inserted Bi4Ti3O12, but 0.5LaFeO3-Bi4Ti3O12 shows ferroelectric hysteresis loops. It can be therefore concluded that 0.5LaFeO3-Bi4Ti3O12 is a multiferroic material. If more perovskite layers (3-layer SrTiO3 or 2.5-layer LaFeO3) are inserted, the Aurivillius structure of Bi4Ti3O12 may appear structural instability that can be observed in our HRTEM measureflent. Our first principles calculations show that the degeneracy of formation enthalpies is the reason why the intergrowth in these materials forms and their structures are not stable. Our work may provide some examples for exploring new multiferroics by means of nano-meter composite.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2015CB921203)和国家自然科学基金(批准号: 11374149, 51032003, 51472112, 10974083)资助的课题.
    • Funds: Project supported by the National Key Basic Research Program of China (Grant No. 2015CB921203), and the National Natural Science Foundation of China (Grant Nos. 11374149, 51032003, 51472112, 10974083).
    [1]

    Spaldin N, Cheong S W, Ramesh R 2010 Phys. Today. 63 38

    [2]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [3]

    Wang K F, Liu J M, Wang Y 2008 Chin. Sci. Bull. 53 1098 (in Chinese) [王克锋, 刘俊明, 王雨 2008 科学通报 53 1098]

    [4]

    Catalan G, Scott J F 2009 Adv. Mater. 21 2463

    [5]

    Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y 2003 Nature 426 55

    [6]

    Fiebig M 2005 J. Phys. D: Appl. Phys. 38 123

    [7]

    Wadati H, Okamoto J, Garganourakis M, Scagnoli V, Staub U, Yamasaki Y, Nakao H, Murakami Y, Mochizuki M, Nakamura M, Kawasaki M, Tokura Y 2012 Phys. Rev. Lett 108 047203

    [8]

    Peterlin-Neumaier T, Steichele E 1986 J. Mag. Mag. Mater. 59 351

    [9]

    Jardiel T, Caballero A C, Villegas M 2008 J. Ceram. Soc. Jpn. 116 511

    [10]

    Joshi P C, Krupanidhi S B 1993 Appl. Phys. Lett. 62 1928

    [11]

    Kuima T, Satoh S, Matsunaga H, Koba M 1996 Jpn. J. Appi. Phys. 35 1246

    [12]

    Dietl T 2010 Nature Mater. 23 965

    [13]

    Singh R S, Bhimasankaram T, Kumar G S, Suryanarayana S V 1994 Solid State Commun. 91 567

    [14]

    Srinivas A, Kim D W, Hong K S, Suryanarayana S V 2004 Mater. Res. Bull. 39 55

    [15]

    Dong X W, Wang K F, Wan J G, Zhu J S, Liu J M 2008 J. Appl. Phys. 103 094101

    [16]

    Suryanarayana S 1994 Bull. Mater. Sci. 17 1259

    [17]

    Coey J M D, Douvalis A P, Fitzgerald C B, Venkatesan M 2004 Appl. Phys. Lett. 84 1332

    [18]

    Chen X Q, Yang F J, Cao W Q, Wang D Y, Chen K 2010 J. Phys. D: Appl. Phys. 43 065001

    [19]

    Jeon M K, Woo S I, Kim Y I, Nahm S H 2004 J. Korean Phys. Soc. 45 1240

    [20]

    Silva J, Reyes A, Esparza H, Camacho H, Fuentes L 2011 Integr. Ferroelectr. 126 47

    [21]

    Singh R S 1996 Ph. D. Dissertation (Hyderabad: Osmania University)

    [22]

    Prasad N V, Kumar G S 2000 J. Magn. Magn. Mater. 213 349

    [23]

    Zurbuchen M A, Freitas R S, Wilson M J, Schiffer P, Roeckerath M, Schubert J, Biegalski M D, Mehta G H, Comstock D J, Lee J H, Jia Y, Schlom D G 2007 Appl. Phys. Lett. 91 033113

    [24]

    Peña O, Guizouarn T, Moure C, Gil V, Tartaj J 2008 Bol. Soc. Esp. Ceram. Vidrio. 47 129

    [25]

    James A R, Kumar G S, Suryanarayana S V, Bhimasankaram T 1996 Ferroelectrics 189 81

    [26]

    Wu F X, Chen Z, Chen Y B, Zhang S T, Zhou J, Zhu Y Y, Chen Y F 2011 Appl. Phys. Lett. 98 212501

    [27]

    Chen Y B, Zhou J, Zhang S T, Wu F X, Yao S H, Gu Z B, Wu D, Chen Y F 2013 Appl. Phys. Lett. 102 042403

    [28]

    Wu F X 2012 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese) [吴飞翔 2012 博士学位论文 (南京: 南京大学)]

    [29]

    Zhou J, Wu F X, Chen Y B, Zhang S T, Chen Y F 2012 J. Mater. Res. 27 2956

  • [1]

    Spaldin N, Cheong S W, Ramesh R 2010 Phys. Today. 63 38

    [2]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [3]

    Wang K F, Liu J M, Wang Y 2008 Chin. Sci. Bull. 53 1098 (in Chinese) [王克锋, 刘俊明, 王雨 2008 科学通报 53 1098]

    [4]

    Catalan G, Scott J F 2009 Adv. Mater. 21 2463

    [5]

    Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y 2003 Nature 426 55

    [6]

    Fiebig M 2005 J. Phys. D: Appl. Phys. 38 123

    [7]

    Wadati H, Okamoto J, Garganourakis M, Scagnoli V, Staub U, Yamasaki Y, Nakao H, Murakami Y, Mochizuki M, Nakamura M, Kawasaki M, Tokura Y 2012 Phys. Rev. Lett 108 047203

    [8]

    Peterlin-Neumaier T, Steichele E 1986 J. Mag. Mag. Mater. 59 351

    [9]

    Jardiel T, Caballero A C, Villegas M 2008 J. Ceram. Soc. Jpn. 116 511

    [10]

    Joshi P C, Krupanidhi S B 1993 Appl. Phys. Lett. 62 1928

    [11]

    Kuima T, Satoh S, Matsunaga H, Koba M 1996 Jpn. J. Appi. Phys. 35 1246

    [12]

    Dietl T 2010 Nature Mater. 23 965

    [13]

    Singh R S, Bhimasankaram T, Kumar G S, Suryanarayana S V 1994 Solid State Commun. 91 567

    [14]

    Srinivas A, Kim D W, Hong K S, Suryanarayana S V 2004 Mater. Res. Bull. 39 55

    [15]

    Dong X W, Wang K F, Wan J G, Zhu J S, Liu J M 2008 J. Appl. Phys. 103 094101

    [16]

    Suryanarayana S 1994 Bull. Mater. Sci. 17 1259

    [17]

    Coey J M D, Douvalis A P, Fitzgerald C B, Venkatesan M 2004 Appl. Phys. Lett. 84 1332

    [18]

    Chen X Q, Yang F J, Cao W Q, Wang D Y, Chen K 2010 J. Phys. D: Appl. Phys. 43 065001

    [19]

    Jeon M K, Woo S I, Kim Y I, Nahm S H 2004 J. Korean Phys. Soc. 45 1240

    [20]

    Silva J, Reyes A, Esparza H, Camacho H, Fuentes L 2011 Integr. Ferroelectr. 126 47

    [21]

    Singh R S 1996 Ph. D. Dissertation (Hyderabad: Osmania University)

    [22]

    Prasad N V, Kumar G S 2000 J. Magn. Magn. Mater. 213 349

    [23]

    Zurbuchen M A, Freitas R S, Wilson M J, Schiffer P, Roeckerath M, Schubert J, Biegalski M D, Mehta G H, Comstock D J, Lee J H, Jia Y, Schlom D G 2007 Appl. Phys. Lett. 91 033113

    [24]

    Peña O, Guizouarn T, Moure C, Gil V, Tartaj J 2008 Bol. Soc. Esp. Ceram. Vidrio. 47 129

    [25]

    James A R, Kumar G S, Suryanarayana S V, Bhimasankaram T 1996 Ferroelectrics 189 81

    [26]

    Wu F X, Chen Z, Chen Y B, Zhang S T, Zhou J, Zhu Y Y, Chen Y F 2011 Appl. Phys. Lett. 98 212501

    [27]

    Chen Y B, Zhou J, Zhang S T, Wu F X, Yao S H, Gu Z B, Wu D, Chen Y F 2013 Appl. Phys. Lett. 102 042403

    [28]

    Wu F X 2012 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese) [吴飞翔 2012 博士学位论文 (南京: 南京大学)]

    [29]

    Zhou J, Wu F X, Chen Y B, Zhang S T, Chen Y F 2012 J. Mater. Res. 27 2956

  • [1] 戚炜恒, 王震, 李翔飞, 禹日成, 王焕华. 外延BaMoO3, BaMoO4薄膜的生长行为. 物理学报, 2022, 71(17): 178103. doi: 10.7498/aps.71.20220736
    [2] 刘婉馨, 陈瑞, 刘永杰, 王俊峰, 韩小涛, 杨明. 脉冲强磁场下的电极化测量系统. 物理学报, 2020, 69(5): 057502. doi: 10.7498/aps.69.20191520
    [3] 樊济宇, 冯瑜, 陆地, 张卫纯, 胡大治, 杨玉娥, 汤如俊, 洪波, 凌浪生, 王彩霞, 马春兰, 朱岩. N型稀磁半导体Ge0.96–xBixFe0.04Te薄膜的磁电性质研究. 物理学报, 2019, 68(10): 107501. doi: 10.7498/aps.68.20190019
    [4] 俞斌, 胡忠强, 程宇心, 彭斌, 周子尧, 刘明. 多铁性磁电器件研究进展. 物理学报, 2018, 67(15): 157507. doi: 10.7498/aps.67.20180857
    [5] 刘小强, 吴淑雅, 朱晓莉, 陈湘明. Ruddlesden-Popper结构杂化非本征铁电体及其多铁性. 物理学报, 2018, 67(15): 157503. doi: 10.7498/aps.67.20180317
    [6] 赵润, 杨浩. 多铁性钙钛矿薄膜的氧空位调控研究进展. 物理学报, 2018, 67(15): 156101. doi: 10.7498/aps.67.20181028
    [7] 翟晓芳, 云宇, 孟德超, 崔璋璋, 黄浩亮, 王建林, 陆亚林. 铋层状氧化物单晶薄膜多铁性研究进展. 物理学报, 2018, 67(15): 157702. doi: 10.7498/aps.67.20181159
    [8] 周龙, 王潇, 张慧敏, 申旭东, 董帅, 龙有文. 多阶有序钙钛矿多铁性材料的高压制备与物性. 物理学报, 2018, 67(15): 157505. doi: 10.7498/aps.67.20180878
    [9] 蔡田怡, 雎胜. 铁电体的光伏效应. 物理学报, 2018, 67(15): 157801. doi: 10.7498/aps.67.20180979
    [10] 宋骁, 高兴森, 刘俊明. 微纳尺度多铁异质结中电驱动磁反转. 物理学报, 2018, 67(15): 157512. doi: 10.7498/aps.67.20181219
    [11] 徐萌, 晏建民, 徐志学, 郭磊, 郑仁奎, 李晓光. 基于PbMg1/3Nb2/3O3-PbTiO3压电单晶的磁电复合薄膜材料研究进展. 物理学报, 2018, 67(15): 157506. doi: 10.7498/aps.67.20180911
    [12] 吴建邦, 周民杰, 王雪敏, 王瑜英, 熊政伟, 程新路, Marie-José Casanove, Christophe Gatel, 吴卫东. 纳米FePt颗粒:MgO多层复合薄膜的外延生长、微观结构与磁性研究. 物理学报, 2014, 63(16): 166801. doi: 10.7498/aps.63.166801
    [13] 王美娜, 李英, 王天兴, 刘国栋. 正交多铁性材料DyMnO3的磁性质研究. 物理学报, 2013, 62(22): 227101. doi: 10.7498/aps.62.227101
    [14] 魏杰, 陈彦均, 徐卓. 多铁性BiFeO3纳米颗粒的尺寸依赖磁性能研究. 物理学报, 2012, 61(5): 057502. doi: 10.7498/aps.61.057502
    [15] 周志东, 张春祖, 张颖. 外延铁电薄膜相变温度的尺寸效应. 物理学报, 2010, 59(9): 6620-6625. doi: 10.7498/aps.59.6620
    [16] 郭冬云, 李超, 王传彬, 沈强, 张联盟, Tu Rong, Goto Takashi. Sol-gel法制备Bi0.85Nd0.15FeO3多铁性薄膜. 物理学报, 2010, 59(8): 5772-5776. doi: 10.7498/aps.59.5772
    [17] 郭熹, 王霞, 郑鹉, 唐为华. Eu掺杂TbMnO3多晶材料的介电性质. 物理学报, 2010, 59(4): 2815-2819. doi: 10.7498/aps.59.2815
    [18] 仲崇贵, 蒋青, 方靖淮, 江学范, 罗礼进. 1-3型纳米多铁复合薄膜中电场诱导的磁化研究. 物理学报, 2009, 58(10): 7227-7234. doi: 10.7498/aps.58.7227
    [19] 孙源, 明星, 孟醒, 孙正昊, 向鹏, 兰民, 陈岗. 多铁材料BaCoF4电子结构的第一性原理研究. 物理学报, 2009, 58(8): 5653-5660. doi: 10.7498/aps.58.5653
    [20] 周耐根, 周 浪. 外延生长薄膜中失配位错形成条件的分子动力学模拟研究. 物理学报, 2005, 54(7): 3278-3283. doi: 10.7498/aps.54.3278
计量
  • 文章访问数:  5212
  • PDF下载量:  657
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-05
  • 修回日期:  2015-02-04
  • 刊出日期:  2015-05-05

/

返回文章
返回