搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于X射线塔尔博特效应的纳米光栅制作模拟研究

闻铭武 杨笑微 王占山

引用本文:
Citation:

基于X射线塔尔博特效应的纳米光栅制作模拟研究

闻铭武, 杨笑微, 王占山

Simulation of nano-grating patterning based on X-ray Talbot effect

Wen Ming-Wu, Yang Xiao-Wei, Wang Zhan-Shan
PDF
导出引用
  • 沿纳米多层膜生长方向切割可制成周期只有几纳米而厚度几十微米的切片多层膜光栅. 基于该切片多层膜光栅塔尔博特自成像效应的X射线光刻是一种新型的纳米图样制作方法. 已有学者用该方法完成了百纳米结构光栅的制作. 采用严格耦合波方法, 本文模拟计算了切片多层膜光栅在满足塔尔博特自成像条件下的后表面光场分布, 详细讨论三个影响光栅后表面成像质量的重要参数:光栅厚度、材料厚度所占比例和多层膜周期. 模拟结果表明, 光栅厚度不仅影响X射线透射率, 还会改变像面条纹衬比度. 材料厚度比的大小直接决定像面是否存在清晰条纹, 选取合适的材料厚度比, 得到了前人实验中近场反常成像现象. 计算还表明, 在一定条件下, 采用周期更小的多层膜光栅有望获得更高分辨率的纳米图形, 这说明使用塔尔博特效应制作更加精细的纳米结构图形具有可行性.
    High aspect ratio gratings can be made by perpendicularly cutting in the growth direction of multilayers. X-ray exposure technique using a sectioned multilayer grating based on Talbot effect is a new type of nano patterning method. Although 300 nanometer gratings through the experiment are completed, some phenomena in the experiments cannot be satisfactorily explained and the factors influencing the nano pattern quality have not been fully understood yet. Here we use a rigorous coupled-wave theory to discuss several important factors, including grating thickness, the fraction of material thickness and multilayer period, which is the first time as far as we know for Talbot self-imaging in X-ray range. Simulation results show that the grating thickness affects both X-ray transmission efficiency and fringe contrast, while the fraction of material thickness determines the quality of fringes. And the position deviation of the best image plane in near field is related to both the thickness of the grating and the multilayer period. Moreover, the multilayer gratings with smaller periods can achieve higher resolution, indicating that the Talbot effect can be used to fabricate a more detailed structure.
    • 基金项目: 国家重点基础研究发展计划(批准号:2011CB922203)和上海市科委纳米计划(批准号:11nm0507200)资助的课题.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2011CB922203), and the Nano Special Program of Science and Technology Commission of Shanghai Municipality, China (Grant No. 11nm0507200).
    [1]

    Cui Z 2008 Micro-Nanofabrication Technologies and Applications(Beijing:Higher Education Press) p107 (in Chinese) [崔铮 2008 微纳加工技术及其应用(北京:高等教育出版社)第 107 页]

    [2]

    Jiang W, Wang N, Yan W, Hu S 2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale Suzhou, China, August 26-30, 2013 p337

    [3]

    Talbot H F 1836 Philos. Mag. 51 401

    [4]

    Rayleigh L 1881 Philos. Mag. 67 196

    [5]

    Kim J M, Cho I H, Lee S Y, Kang H C, Conley R, Liu C, Macrander A T, Noh D Y 2010 Opt. Express 18 24975

    [6]

    Matsuyama S, Yokoyama H, Fukui R, Kohmura Y, Tamasaku K, Yabashi M, Yashiro W, Momose A, Ishikawa T, Yamauchi K 2012 Opt. Express 20 24977

    [7]

    Wang H C, Berujon S, Pape I, Rutishauser S, David C, Sawhney K 2013 Opt. Lett. 38 827

    [8]

    Stutman D, Finkenthal M 2012 Appl. Phys. Lett. 101 091108

    [9]

    Lei Y H, Liu X, Guo J C, Zhao Z G, Liu H B 2011 Chin. Phys. B 20 042901

    [10]

    Chapman M S, Ekstrom C R, Hammond T D, Schmiedmayer J, Tannian B E, Wehinger S,. Pritchard D E 1995 Phys. Rev. A 5 1

    [11]

    Solak H H, Ekinci Y 2005 J. Vac. Sci. Technol. 23 2705

    [12]

    Isoyan A, Jiang F, Cheng YC, Cerrina F, Wachulak P, Urbanski L, Rocca J, Menoni C, Marconi M 2009 J. Vac. Sci. Technol. 27 2931

    [13]

    Lee S Y, Cho I H, Kim J M, Yan H, Conley R, Liu C, Macrander AT, Maser J, Stephenson GB, Kang HC, Noh DY 2011 J Appl. Phys. 109 44307

    [14]

    Attwood D 1999 Soft X-rays and Extreme Ultraviolet Radiation Principles and Applications (New York:Cambridge University Press) p357

    [15]

    Gaylord T K, Moharam M G 1982 Phys. Rev. B 28 1

    [16]

    Magnusson R, Gaylord T K 1977 J. Opt. Soc. Am. 9 1165

    [17]

    Chu R, Kong J A 1977 IEEE Trans. Microwave Theory Tech. 1 14

    [18]

    Moharam M G, Gaylord T K 1981 J. Opt. Soc. Am. 7 811

    [19]

    Gaylord T K, Moharam M G 1985 Proc. IEEE 5 894

    [20]

    Zhang G P, Ye J X, Li Z G 1996 Chin. Phys. B 5 817

  • [1]

    Cui Z 2008 Micro-Nanofabrication Technologies and Applications(Beijing:Higher Education Press) p107 (in Chinese) [崔铮 2008 微纳加工技术及其应用(北京:高等教育出版社)第 107 页]

    [2]

    Jiang W, Wang N, Yan W, Hu S 2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale Suzhou, China, August 26-30, 2013 p337

    [3]

    Talbot H F 1836 Philos. Mag. 51 401

    [4]

    Rayleigh L 1881 Philos. Mag. 67 196

    [5]

    Kim J M, Cho I H, Lee S Y, Kang H C, Conley R, Liu C, Macrander A T, Noh D Y 2010 Opt. Express 18 24975

    [6]

    Matsuyama S, Yokoyama H, Fukui R, Kohmura Y, Tamasaku K, Yabashi M, Yashiro W, Momose A, Ishikawa T, Yamauchi K 2012 Opt. Express 20 24977

    [7]

    Wang H C, Berujon S, Pape I, Rutishauser S, David C, Sawhney K 2013 Opt. Lett. 38 827

    [8]

    Stutman D, Finkenthal M 2012 Appl. Phys. Lett. 101 091108

    [9]

    Lei Y H, Liu X, Guo J C, Zhao Z G, Liu H B 2011 Chin. Phys. B 20 042901

    [10]

    Chapman M S, Ekstrom C R, Hammond T D, Schmiedmayer J, Tannian B E, Wehinger S,. Pritchard D E 1995 Phys. Rev. A 5 1

    [11]

    Solak H H, Ekinci Y 2005 J. Vac. Sci. Technol. 23 2705

    [12]

    Isoyan A, Jiang F, Cheng YC, Cerrina F, Wachulak P, Urbanski L, Rocca J, Menoni C, Marconi M 2009 J. Vac. Sci. Technol. 27 2931

    [13]

    Lee S Y, Cho I H, Kim J M, Yan H, Conley R, Liu C, Macrander AT, Maser J, Stephenson GB, Kang HC, Noh DY 2011 J Appl. Phys. 109 44307

    [14]

    Attwood D 1999 Soft X-rays and Extreme Ultraviolet Radiation Principles and Applications (New York:Cambridge University Press) p357

    [15]

    Gaylord T K, Moharam M G 1982 Phys. Rev. B 28 1

    [16]

    Magnusson R, Gaylord T K 1977 J. Opt. Soc. Am. 9 1165

    [17]

    Chu R, Kong J A 1977 IEEE Trans. Microwave Theory Tech. 1 14

    [18]

    Moharam M G, Gaylord T K 1981 J. Opt. Soc. Am. 7 811

    [19]

    Gaylord T K, Moharam M G 1985 Proc. IEEE 5 894

    [20]

    Zhang G P, Ye J X, Li Z G 1996 Chin. Phys. B 5 817

  • [1] 何小安, 杨家敏, 黎宇坤, 李晋, 熊刚. 软X射线条纹相机CsI光阴极响应灵敏度的理论计算. 物理学报, 2023, 72(24): 245203. doi: 10.7498/aps.72.20231043
    [2] 崔涛, 王康妮, 高凯歌, 钱林勇. 带有多孔二氧化硅间隔层的导模共振光栅实现染料激光器发射增强. 物理学报, 2021, 70(1): 014201. doi: 10.7498/aps.70.20201017
    [3] 梁昌慧, 张小安, 李耀宗, 赵永涛, 周贤明, 王兴, 梅策香, 肖国青. 不同离子激发Au靶的多电离效应. 物理学报, 2018, 67(24): 243201. doi: 10.7498/aps.67.20181642
    [4] 马堃, 焦铮, 蒋峰建, 叶剑锋, 吕海江, 陈展斌. 洞态Ar原子Kα和Kβ伴线和超伴线的理论计算. 物理学报, 2018, 67(17): 173201. doi: 10.7498/aps.67.20180553
    [5] 马智超, 徐智谋, 彭静, 孙堂友, 陈修国, 赵文宁, 刘思思, 武兴会, 邹超, 刘世元. 基于光谱椭偏仪的纳米光栅无损检测. 物理学报, 2014, 63(3): 039101. doi: 10.7498/aps.63.039101
    [6] 徐向东, 刘颖, 邱克强, 刘正坤, 洪义麟, 付绍军. HfO2顶层多层介质膜脉宽压缩光栅的离子束刻蚀. 物理学报, 2013, 62(23): 234202. doi: 10.7498/aps.62.234202
    [7] 陈泳屹, 秦莉, 佟存柱, 王立军. 金属-介质光栅结构表面等离子体耦合效率的模拟研究. 物理学报, 2013, 62(16): 167301. doi: 10.7498/aps.62.167301
    [8] 王兴, 赵永涛, 程锐, 周贤明, 徐戈, 孙渊博, 雷瑜, 王瑜玉, 任洁茹, 虞洋, 李永峰, 张小安, 李耀宗, 梁昌慧, 肖国青. 重离子轰击Ta靶引起的多电离效应. 物理学报, 2012, 61(19): 193201. doi: 10.7498/aps.61.193201
    [9] 张戎, 郭旭光, 曹俊诚. 太赫兹量子阱光电探测器光栅耦合的模拟与优化. 物理学报, 2011, 60(5): 050705. doi: 10.7498/aps.60.050705
    [10] 孔伟金, 王书浩, 魏世杰, 云茂金, 张文飞, 王心洁, 张蒙蒙. 基于严格耦合波理论的宽光谱金属介质膜光栅衍射特性分析. 物理学报, 2011, 60(11): 114214. doi: 10.7498/aps.60.114214
    [11] 刘鑫, 雷耀虎, 赵志刚, 郭金川, 牛憨笨. 硬X射线相位光栅的设计与研制. 物理学报, 2010, 59(10): 6927-6932. doi: 10.7498/aps.59.6927
    [12] 赵华君, 杨守良, 张东, 梁康有, 程正富, 石东平. 亚波长金属偏振分束光栅设计分析. 物理学报, 2009, 58(9): 6236-6242. doi: 10.7498/aps.58.6236
    [13] 刘世元, 顾华勇, 张传维, 沈宏伟. 基于修正等效介质理论的微纳深沟槽结构反射率快速算法研究. 物理学报, 2008, 57(9): 5996-6001. doi: 10.7498/aps.57.5996
    [14] 郑致刚, 李文萃, 刘永刚, 宣 丽. 双重复合式液晶/聚合物电调谐光栅的制备. 物理学报, 2008, 57(11): 7344-7348. doi: 10.7498/aps.57.7344
    [15] 孔伟金, 云茂金, 孙 欣, 刘均海, 范正修, 邵建达. 基于严格耦合波理论的多层介质膜光栅衍射特性分析. 物理学报, 2008, 57(8): 4904-4910. doi: 10.7498/aps.57.4904
    [16] 陈 博, 朱佩平, 刘宜晋, 王寯越, 袁清习, 黄万霞, 明 海, 吴自玉. X射线光栅相位成像的理论和方法. 物理学报, 2008, 57(3): 1576-1581. doi: 10.7498/aps.57.1576
    [17] 王淮生. 啁啾超短脉冲光波照射下光栅Talbot效应的研究. 物理学报, 2005, 54(12): 5688-5691. doi: 10.7498/aps.54.5688
    [18] 郭红霞, 陈雨生, 张义门, 韩福斌, 贺朝会, 周辉. 浮栅ROM器件x射线剂量增强效应实验研究. 物理学报, 2002, 51(10): 2315-2319. doi: 10.7498/aps.51.2315
    [19] 郭红霞, 陈雨生, 张义门, 周辉, 龚建成, 韩福斌, 关颖, 吴国荣. 稳态、瞬态X射线辐照引起的互补性金属-氧化物-半导体器件剂量增强效应研究. 物理学报, 2001, 50(12): 2279-2283. doi: 10.7498/aps.50.2279
    [20] 陈宝振. X射线在毛细导管中传输的理论研究. 物理学报, 2000, 49(10): 1933-1937. doi: 10.7498/aps.49.1933
计量
  • 文章访问数:  6269
  • PDF下载量:  446
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-07
  • 修回日期:  2014-09-27
  • 刊出日期:  2015-06-05

/

返回文章
返回