搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GaN基微缩化发光二极管尺寸效应和阵列显示

邰建鹏 郭伟玲 李梦梅 邓杰 陈佳昕

引用本文:
Citation:

GaN基微缩化发光二极管尺寸效应和阵列显示

邰建鹏, 郭伟玲, 李梦梅, 邓杰, 陈佳昕

GaN based micro-light-emitting diode size effect and array display

Tai Jian-Peng, Guo Wei-Ling, Li Meng-Mei, Deng Jie, Chen Jia-Xin
PDF
HTML
导出引用
  • 设计制备了不同大小的单颗微缩化发光二极管(Micro-LED)和Micro-LED阵列. 其中, 单颗Micro-LED尺寸为40—100 μm, 其电极结构为共N极, P极单独引出; 阵列像素数量为8 × 8, 被动驱动结构, 像素大小为60 μm. 器件制备过程中使用厚光刻胶作掩膜, 刻蚀N型GaN外延片至衬底, 形成隔离槽. 通过优化电极结构和厚度, 提高了P电极在隔离槽爬坡处的可靠性; 使用现场可编程门阵列(field-programmable gate array, FPGA)对Micro-LED被动阵列进行了驱动显示. 对于不同尺寸的单颗Micro-LED进行了电学、光学、热学等方面的测试分析. 结果表明: 随着尺寸的减小, Micro-LED所能承受的电流密度越大; Micro-LED与普通蓝光LED相比具有较大的k系数, 并且随着尺寸的减小, k系数的数值增大, 热稳定性不如传统蓝光LED. FPGA可以实现对Micro-LED被动阵列的良好驱动.
    Single micro-light emitting diodes(LEDs) with different sizes and array micro-LED are designed and prepared, where the sizes of the single micro-LEDs are in a range of 40−100 μm, their electrodes are all co-N electrodes, P electrode is drawn out alone; the number of array pixels is $ 8\times8 $, which is a passively driving structure with a pixel size of 60 μm. In the process of device preparation, N electrode and P electrode are fabricated by the sputtering & stripping method. The electrode thickness is 2.4 μm. Thick photoresist 5120 is used as a mask, and N GaN is etched to the substrate by using the ICP dry etching to form an isolation trench. The PECVD technique is used to deposit an SiO2 insulating layer with a thickness of 10000 Å. By optimizing the electrode structure and thickness, the reliability of the P electrode at the slope of the isolation trench is improved, and the SiO2 insulating layer has good encapsulation; field programmable gate array (FPGA) is used to drive and display the micro-LED passive array. The single micro-LEDs of different sizes are tested and analyzed in the aspects of electrics, photics and thermotics and the results of which show that the current density corresponding to the peak radiation flux of 80 μm micro-LED is 1869.2 A/cm2, which is 57.1% higher than that of 100 μm micro-LED, indicating that the current density corresponding to the peak radiation flux of micro-LED increases as the size decreases; compared with the ordinary blue LED, the micro-LED has a large k factor, and with the size decreases, the value of the k factor increases, indicating that the micro-LED series resistance is larger, and the thermal stability is not so good as the traditional blue LED. Finally, the field programmable gate array (FPGA) can achieve a good drive for the micro-LED passive array. The driving principle is passive scanning driving, which is carried out in a row-by-row lighting mode. The FPGA clock is 50 MHz, and 320 ns is required for the circuit to scan all rows.
      通信作者: 郭伟玲, guoweiling@bjut.edu.cn
      Corresponding author: Guo Wei-Ling, guoweiling@bjut.edu.cn
    [1]

    Gong Z, Jin S R, Chen Y J, Jonathan M, David M, Ian M W, Erdan G, Martin D D 2010 Appl. Phys. Lett. 97 013103Google Scholar

    [2]

    Tian P F, Jonathan J D M, Gong Z, Benoit G, Ian M W, Erdan G, Chen Z Z, C, Zhang G Y, Martin D D 2012 Appl. Phys. Lett. 101 231110Google Scholar

    [3]

    Olivier F, Daami A, Licitra C, Templier F 2017 Appl. Phys. Lett. 111 022104Google Scholar

    [4]

    Zhan J L, Chen Z Z, Jiao Q Q J, Feng Y L, Li C C, Chen Y F, Chen Y Y, Jiao F, Kang X N, Li S F, Wang Q, Yu T J, Zhang G Y, Shen B 2018 Opt. Express 26 5265Google Scholar

    [5]

    邰建鹏, 郭伟玲 2019 照明工程学报 30 18

    Tai J P, Guo W L 2019 China Illuminating Engineering Journal 30 18

    [6]

    Jin S X, Li J, Li J Z, Lin J Y, Jiang H X 2000 Appl. Phys. Lett. 76 631Google Scholar

    [7]

    Jeon C W, Kim K S, Dawson M D 2002 Phys. Stat. Sol. (a) 192 325Google Scholar

    [8]

    Gong Z, Zhang H X, Gu E, Griffin C, Dawson M D, Poher V, Kennedy G, French P M W, Neil M A A 2007 IEEE Trans. Electron Dev. 54 2650Google Scholar

    [9]

    Sun C W, Chao C H, Chen H Y, Chiu Y H, Yeh W Y, Wu M H, Yen H H, Liang C C 2012 SID Symposium Digest of Technical Papers 42 1042

    [10]

    Li X B, Wu L, Liu Z J, Babar H, Chong W C, Lau K M, C. Patrick Y 2016 J. Lightwave Technol. 34 3449Google Scholar

    [11]

    Liu Z J, Chong W C, Wong K M, Tam K H, Lau K M 2013 IEEE Photonics Technol. Lett. 25 2267Google Scholar

    [12]

    Liu Z J, Chong W C, Wong K M, Lau K M 2013 J. Disp. Technol. 9 678Google Scholar

    [13]

    Liu Z J, Chong W C, Wong K M, Lau K M 2015 J. Microelectronic Eng. 148 98Google Scholar

    [14]

    Deng P, Zhang K, Liu Z J 2016 IEEE J. Electron Dev. Soc. 5 90

    [15]

    Choi H W, Jeon C W, Dawson M D 2004 IEEE Electron Dev. Lett. 25 277Google Scholar

    [16]

    Guo W L, Tai J P, Liu J P, Sun J 2019 J. Electronic Mater. 48 5195Google Scholar

    [17]

    李炳乾, 郑同场, 夏正浩 2009 物理学报 58 7189Google Scholar

    Li B Q, Zheng T C, Xia Z H 2009 Acta Phys. Sin. 58 7189Google Scholar

    [18]

    Cao X A, Teetsov J M, D’Evelyn M P, Merfeld D W, Yan C H 2004 Appl. Phys. Lett. 85 7Google Scholar

    [19]

    Chong W C, Cho W K, Liu Z j, Wang C H, Lau K M 2014 IEEE Compound Semiconductor Integrated Circuit Symposium La Jolla, October 19−22, 2014 p978

    [20]

    Deng P, Zhang K, Chao V S D, Mo W j, Lau K M, Liu Z J 2016 J. Disp. Technol. 7 742

    [21]

    李炳乾, 布良基, 甘雄文, 范广涵 2003 光子学报 32 1349

    Li B Q, Bu L J, Gan X W, Fan G H 2003 Acta. Photon. Sin. 32 1349

  • 图 1  (a) Micro-LED结构示意图; (b) 尺寸为40—100 μm的Micro-LED光学显微图; (c) Micro-LED阵列3D结构图; (d) 阵列光学显微镜图

    Fig. 1.  (a) Schematic structure of single Micro-LED; (b) the optical micrograph of the Micro-LEDs with diameters from 40 μm to 100 μm; (c) 3D structure diagram of passive Micro-LED array; (d) optical micrograph.

    图 2  不同尺寸的Micro-LED I-V曲线

    Fig. 2.  Size-dependent characteristics of current versus voltage (I-V).

    图 3  Micro-LED的尺寸与光通量和辐射通量的关系  (a) 光通量与电流密度的关系; (b) 辐射通量与电流密度的关系

    Fig. 3.  Size-dependent characteristics of luminous flux and radiant flux: (a) Current density versus luminous flux; (b) current density versus radiant flux.

    图 4  不同测试电流下温度与电压的关系, 以及k系数与Micro-LED尺寸的关系 (a) 0.5 mA下温度与电压关系图; (b) 2 mA下温度与电压关系图; (c) 5 mA下温度与电压关系图; (d) 使用最小二乘法拟合图(a)—(c)得到的k系数与尺寸的关系曲线

    Fig. 4.  Temperature versus voltage curves with various test current, and Micro-LED size versus k coefficient: (a) Temperature versus voltage curves at 0.5 mA; (b) temperature versus voltage curves at 2 mA; (c) temperature versus voltage curves at 5 mA; (d) size and drive current versus k coefficient.

    图 5  不同温度和测试电流下尺寸和辐射通量的关系

    Fig. 5.  Micro-LED pixel size versus radiant flux with different temperature and test current.

    图 6  尺寸为60 μm的被动Micro-LED阵列使用FPGA进行驱动点亮 (a) 显示样品; (b) 点亮的显示阵列

    Fig. 6.  Passive picro-LED array whose pixel size is 60 μm, driven and lighted by FPGA: (a) Display sample; (b) display array light.

  • [1]

    Gong Z, Jin S R, Chen Y J, Jonathan M, David M, Ian M W, Erdan G, Martin D D 2010 Appl. Phys. Lett. 97 013103Google Scholar

    [2]

    Tian P F, Jonathan J D M, Gong Z, Benoit G, Ian M W, Erdan G, Chen Z Z, C, Zhang G Y, Martin D D 2012 Appl. Phys. Lett. 101 231110Google Scholar

    [3]

    Olivier F, Daami A, Licitra C, Templier F 2017 Appl. Phys. Lett. 111 022104Google Scholar

    [4]

    Zhan J L, Chen Z Z, Jiao Q Q J, Feng Y L, Li C C, Chen Y F, Chen Y Y, Jiao F, Kang X N, Li S F, Wang Q, Yu T J, Zhang G Y, Shen B 2018 Opt. Express 26 5265Google Scholar

    [5]

    邰建鹏, 郭伟玲 2019 照明工程学报 30 18

    Tai J P, Guo W L 2019 China Illuminating Engineering Journal 30 18

    [6]

    Jin S X, Li J, Li J Z, Lin J Y, Jiang H X 2000 Appl. Phys. Lett. 76 631Google Scholar

    [7]

    Jeon C W, Kim K S, Dawson M D 2002 Phys. Stat. Sol. (a) 192 325Google Scholar

    [8]

    Gong Z, Zhang H X, Gu E, Griffin C, Dawson M D, Poher V, Kennedy G, French P M W, Neil M A A 2007 IEEE Trans. Electron Dev. 54 2650Google Scholar

    [9]

    Sun C W, Chao C H, Chen H Y, Chiu Y H, Yeh W Y, Wu M H, Yen H H, Liang C C 2012 SID Symposium Digest of Technical Papers 42 1042

    [10]

    Li X B, Wu L, Liu Z J, Babar H, Chong W C, Lau K M, C. Patrick Y 2016 J. Lightwave Technol. 34 3449Google Scholar

    [11]

    Liu Z J, Chong W C, Wong K M, Tam K H, Lau K M 2013 IEEE Photonics Technol. Lett. 25 2267Google Scholar

    [12]

    Liu Z J, Chong W C, Wong K M, Lau K M 2013 J. Disp. Technol. 9 678Google Scholar

    [13]

    Liu Z J, Chong W C, Wong K M, Lau K M 2015 J. Microelectronic Eng. 148 98Google Scholar

    [14]

    Deng P, Zhang K, Liu Z J 2016 IEEE J. Electron Dev. Soc. 5 90

    [15]

    Choi H W, Jeon C W, Dawson M D 2004 IEEE Electron Dev. Lett. 25 277Google Scholar

    [16]

    Guo W L, Tai J P, Liu J P, Sun J 2019 J. Electronic Mater. 48 5195Google Scholar

    [17]

    李炳乾, 郑同场, 夏正浩 2009 物理学报 58 7189Google Scholar

    Li B Q, Zheng T C, Xia Z H 2009 Acta Phys. Sin. 58 7189Google Scholar

    [18]

    Cao X A, Teetsov J M, D’Evelyn M P, Merfeld D W, Yan C H 2004 Appl. Phys. Lett. 85 7Google Scholar

    [19]

    Chong W C, Cho W K, Liu Z j, Wang C H, Lau K M 2014 IEEE Compound Semiconductor Integrated Circuit Symposium La Jolla, October 19−22, 2014 p978

    [20]

    Deng P, Zhang K, Chao V S D, Mo W j, Lau K M, Liu Z J 2016 J. Disp. Technol. 7 742

    [21]

    李炳乾, 布良基, 甘雄文, 范广涵 2003 光子学报 32 1349

    Li B Q, Bu L J, Gan X W, Fan G H 2003 Acta. Photon. Sin. 32 1349

  • [1] 王飞, 李全军, 胡阔, 刘冰冰. 高压导致纳米TiO2形变的电子显微研究. 物理学报, 2023, 72(3): 036201. doi: 10.7498/aps.72.20221656
    [2] 安敏荣, 李思澜, 宿梦嘉, 邓琼, 宋海洋. 尺寸依赖的CoCrFeNiMn晶体/非晶双相高熵合金塑性变形机制的分子动力学模拟. 物理学报, 2022, 71(24): 243101. doi: 10.7498/aps.71.20221368
    [3] 张龙艳, 徐进良, 雷俊鹏. 尺寸效应对微通道内固液界面温度边界的影响. 物理学报, 2019, 68(2): 020201. doi: 10.7498/aps.68.20181876
    [4] 华钰超, 曹炳阳. 多约束纳米结构的声子热导率模型研究. 物理学报, 2015, 64(14): 146501. doi: 10.7498/aps.64.146501
    [5] 阳喜元, 全军. 金属纳米线弹性性能的尺寸效应及其内在机理的模拟研究. 物理学报, 2015, 64(11): 116201. doi: 10.7498/aps.64.116201
    [6] 李鑫, 张梁, 羊梦诗, 储修祥, 徐灿, 陈亮, 王悦悦. 低聚壳聚糖几何结构和物理化学属性的理论研究. 物理学报, 2014, 63(7): 076102. doi: 10.7498/aps.63.076102
    [7] 谷卓, 班士良. 纤锌矿结构ZnO/MgxZn1-xO量子阱中带间光吸收的尺寸效应和三元混晶效应. 物理学报, 2014, 63(10): 107301. doi: 10.7498/aps.63.107301
    [8] 任丹, 杜平安, 聂宝林, 曹钟, 刘文奎. 一种考虑小孔尺寸效应的孔阵等效建模方法. 物理学报, 2014, 63(12): 120701. doi: 10.7498/aps.63.120701
    [9] 华钰超, 董源, 曹炳阳. 硅纳米薄膜中声子弹道扩散导热的蒙特卡罗模拟. 物理学报, 2013, 62(24): 244401. doi: 10.7498/aps.62.244401
    [10] 李鑫, 羊梦诗, 叶志鹏, 陈亮, 徐灿, 储修祥. 甘氨酸色氨酸寡肽链的红外光谱的密度泛函研究. 物理学报, 2013, 62(15): 156103. doi: 10.7498/aps.62.156103
    [11] 羊梦诗, 李鑫, 叶志鹏, 陈亮, 徐灿, 储修祥. 丝素氨基酸寡肽链生长过程中的尺寸效应. 物理学报, 2013, 62(23): 236101. doi: 10.7498/aps.62.236101
    [12] 张祺, 厚美瑛. 直剪颗粒体系的尺寸效应研究. 物理学报, 2012, 61(24): 244504. doi: 10.7498/aps.61.244504
    [13] 周国荣, 滕新营, 王艳, 耿浩然, 许甫宁. 尺寸效应对Al纳米线凝固行为的影响. 物理学报, 2012, 61(6): 066101. doi: 10.7498/aps.61.066101
    [14] 王度阳, 孙慧卿, 解晓宇, 张盼君. GaN基LED量子阱内量子点发光性质的模拟分析. 物理学报, 2012, 61(22): 227303. doi: 10.7498/aps.61.227303
    [15] 周志东, 张春祖, 张颖. 外延铁电薄膜相变温度的尺寸效应. 物理学报, 2010, 59(9): 6620-6625. doi: 10.7498/aps.59.6620
    [16] 徐 灿, 曹 娟, 高晨阳. 第一性原理研究一维SiO2纳米材料的结构和性质. 物理学报, 2006, 55(8): 4221-4225. doi: 10.7498/aps.55.4221
    [17] 张 芸, 张波萍, 焦力实, 李向阳. Au/SiO2纳米复合薄膜的微结构及光吸收特性研究. 物理学报, 2006, 55(4): 2078-2083. doi: 10.7498/aps.55.2078
    [18] 吴国强, 孔宪仁, 孙兆伟, 王亚辉. 氩晶体薄膜法向热导率的分子动力学模拟. 物理学报, 2006, 55(1): 1-5. doi: 10.7498/aps.55.1
    [19] 艾树涛, 蔡元贞. 与相变潜热有关的铁电-顺电相界动力学及其尺寸效应. 物理学报, 2006, 55(7): 3721-3724. doi: 10.7498/aps.55.3721
    [20] 王松有, 巨晓华, 李合印, 许旭东, 周鹏, 张荣君, 杨月梅, 周仕明, 陈良尧. Fe-Ag颗粒膜的光学与磁光尺寸效应. 物理学报, 2001, 50(11): 2252-2257. doi: 10.7498/aps.50.2252
计量
  • 文章访问数:  8832
  • PDF下载量:  281
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-27
  • 修回日期:  2020-05-28
  • 上网日期:  2020-05-29
  • 刊出日期:  2020-09-05

/

返回文章
返回