搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流场环境下复杂囊泡的动力学行为

邓真渝 章林溪

引用本文:
Citation:

流场环境下复杂囊泡的动力学行为

邓真渝, 章林溪

Dynamics of complex vesicles in shear flow

Deng Zhen-Yu, Zhang Lin-Xi
PDF
导出引用
  • 采用非平衡态分子动力学方法研究了二维复杂囊泡在剪切流中的动力学行为. 模拟发现了复杂囊泡经典的翻滚(tumbling)、摇摆(trembling)和坦克履(tank-treading)行为, 还观察到由坦克履行为向平动行为(translating)的转变. 囊泡的平动行为与剪切率大小、复杂囊泡的形状密切相关. 当大囊泡均匀嫁接较多数目的小囊泡后, 其平动方式消失. 该研究有益于加深对囊泡在剪切流场中复杂性行为的理解.
    Vesicles exposed to shear flow exhibit a remarkably rich dynamics. With the increase of shear rate, one can observe a tumbling-to-tank-treading transition. Besides, a complex oscillating motion, which has alternatively been called trembling, swinging, or vacillating breathing, has also been predicted theoretically and observed experimentally. While in biological systems, vesicles are always decorated by a large number of macromolecules, rendering the dynamics of vesicles in shear flow much more complex. As a powerful supplement to analytical techniques, the dissipative particle dynamics has been proved to be a useful tool in simulating nonequilibrium behaviors under shear. By replacing the conservative force in dissipative particle dynamics with a repulsive Lennard-Jones potential, the density distortion has been overcome and the no-slip boundary condition is achieved. In this article, a nonequilibrium molecular dynamic method is used to study the dynamics of two-dimensional complex vesicles in shear flow. The dynamical behaviors of the complex vesicles are closely related to shear rate and the size of small grafting vesicle. We first consider a vesicle with two small vesicles symmetrically grafted. At a weak flow, the complex vesicle maintains its equilibrium shape and undergoes an unsteady flipping motion, known as tumbling motion. At a moderate shear rate, the tumbling of the vesicle is accompanied with strong shape oscillation, which is consistent with Yazdani's simulation, in which a breathing-with-tumbling type of motion is observed, and is called trembling in this article. As the shear rate further increases, the vesicle is oriented at a fixed angle with respect to the flow direction, while the vesicle membrane circulates around its surface area, exhibiting a well-known tank-treading motion. For sufficiently large grafted vesicles and at a high enough shear rate, a transition from tank-treading to translating motion is observed, in which the flipping of the vesicle or the circulating of the vesicle membrane is hampered. A crossover regime, namely, the tank-treading/translating mixture motion is also found, where translating motion alternates with tank-treading chaotically. However, when a sufficient number of small vesicles are uniformly grafted to the vesicle, the newly observed translating motion is eliminated. This study can give a deeper insight into the complexity of vesicle motions in shear flow.
    • 基金项目: 国家自然学科基金(批准号: 21174131, 21374102)和国家自然学科基金重点项目(批准号: 20934004)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21174131, 21374102) and the Key Program of the National Natural Science Foundation of China (Grant No. 20934004).
    [1]

    Noguchi H, Gompper G 2007 Phys. Rev. Lett. 98 128103

    [2]

    de Haas K, Blom C, van den Ende D, Duits M H G, Mellema J 1997 Phys. Rev. E 56 7132

    [3]

    Kantsler V, Steinberg V 2005 Phys. Rev. Lett. 95 258101

    [4]

    Zabusky N J, Segre E, Deschamps J, Kantsler V, Steinberg V 2011 Phys. Fluids 23 041905

    [5]

    Yazdani A Z K, Bagchi P 2011 Phys. Rev. E 84 026314

    [6]

    Doebereiner H G, Evans E, Krauss M, Seifert U, Wortis M 1997 Phys. Rev. E 55 4458

    [7]

    Guo K, Wang J, Qiu F, Zhang H, Yang Y 2009 Soft Matter 5 1646

    [8]

    Soddemann T, Dünweg B, Kremer K 2003 Phys. Rev. E 68 046702

    [9]

    Finken R, Lamura A, Seifert U, Gompper G 2008 Eur. Phys. J. E 25 309

    [10]

    Deng Z Y, Zhang D, Zhang L X 2015 Materials Today Comm. 3 130

    [11]

    Kaoui B, Biros G, Misbah C 2009 Phys. Rev. Lett. 103 188101

    [12]

    Kaoui B, Ristow G H, Cantat I, Misbah C, Zimmermann W 2008 Phys. Rev. E 77 021903

    [13]

    Kaoui B, Kruger T, Harting J 2013 Soft Matter 9 8057

    [14]

    Wen X H, Zhang D, Zhang L X 2012 Polymer 53 873

    [15]

    Bai Z Q, Guo H X 2013 Polymer 54 2146

    [16]

    Plimpton S J 1995 J. Comput. Phys. 117 1

  • [1]

    Noguchi H, Gompper G 2007 Phys. Rev. Lett. 98 128103

    [2]

    de Haas K, Blom C, van den Ende D, Duits M H G, Mellema J 1997 Phys. Rev. E 56 7132

    [3]

    Kantsler V, Steinberg V 2005 Phys. Rev. Lett. 95 258101

    [4]

    Zabusky N J, Segre E, Deschamps J, Kantsler V, Steinberg V 2011 Phys. Fluids 23 041905

    [5]

    Yazdani A Z K, Bagchi P 2011 Phys. Rev. E 84 026314

    [6]

    Doebereiner H G, Evans E, Krauss M, Seifert U, Wortis M 1997 Phys. Rev. E 55 4458

    [7]

    Guo K, Wang J, Qiu F, Zhang H, Yang Y 2009 Soft Matter 5 1646

    [8]

    Soddemann T, Dünweg B, Kremer K 2003 Phys. Rev. E 68 046702

    [9]

    Finken R, Lamura A, Seifert U, Gompper G 2008 Eur. Phys. J. E 25 309

    [10]

    Deng Z Y, Zhang D, Zhang L X 2015 Materials Today Comm. 3 130

    [11]

    Kaoui B, Biros G, Misbah C 2009 Phys. Rev. Lett. 103 188101

    [12]

    Kaoui B, Ristow G H, Cantat I, Misbah C, Zimmermann W 2008 Phys. Rev. E 77 021903

    [13]

    Kaoui B, Kruger T, Harting J 2013 Soft Matter 9 8057

    [14]

    Wen X H, Zhang D, Zhang L X 2012 Polymer 53 873

    [15]

    Bai Z Q, Guo H X 2013 Polymer 54 2146

    [16]

    Plimpton S J 1995 J. Comput. Phys. 117 1

计量
  • 文章访问数:  5135
  • PDF下载量:  219
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-24
  • 修回日期:  2015-04-15
  • 刊出日期:  2015-08-05

/

返回文章
返回