搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化锌掺铝绒面薄膜在有机光伏电池中的应用

张科 胡子阳 黄利克 徐洁 张京 诸跃进

引用本文:
Citation:

氧化锌掺铝绒面薄膜在有机光伏电池中的应用

张科, 胡子阳, 黄利克, 徐洁, 张京, 诸跃进

ZnO:Al textured films for improved performance in organic photovoltaics

Zhang Ke, Hu Zi-Yang, Huang Li-Ke, Xu Jie, Zhang Jing, Zhu Yue-Jin
PDF
导出引用
  • 目前有机光伏电池的吸光活性层电学传输特性和光学吸收特性的不匹配是制约其能量转换效率提升的主要原因之一. 通过陷光结构对入射光进行调控, 提高电池对光的约束和俘获能力从而达到“电学薄”和“光学厚”的等效作用, 是解 决有机光伏电池电学和光学不匹配的有效手段. 本文采用湿法刻蚀技术获得了系列时间梯度的绒面氧化锌掺铝薄膜, 并将其作为有机光伏电池的入射陷光电极, 显著增强了电池的光学吸收. 研究发现, 当使用浓度0.5%的稀HCL腐蚀30 s后的氧化锌掺铝薄膜作为入射电极后, 电池的光电性能和效率显著增强. 基于此绒面电极电池的电流密度比平面结构的电池提高了8.17%, 效率改善了11.29%. 通过对绒面电极表面的修饰处理, 实现了电极与光活性层之间良好的界面接触, 从而减小了对电池的开路电压和填充因子的影响.
    A major issue in organic photovoltaics (OPVs) is the poor mobility and recombination of the photogenerated charge carriers. The active layer has to be kept thin to facilitate charge transport and minimize recombination losses. However, optical losses due to inefficient light absorption in the thin active layers can be considerable in OPVs. Therefore, light trapping schemes are critically important for efficient OPVs. In this paper, high efficient OPVs are demonstrated by introducing randomly nanostructured front electrodes, which are fabricated using commercially available ZnO:Al (AZO) films by means of a wet etching method. The etched AZO front electrode induces strong diffusion and scattering of the incident light, leading to the efficient light trapping within the device and enhancement of light absorption in the active layer. Such a nanostructured electrode can achieve an improved device performance by maintaining simultaneously high open-circuit voltage and fill factor values, while providing excellent short-circuit current enhancement through efficient light trapping. The best device obtained based on the textured electrode shows a 11.29% improvement in short current density and a 8.17% improvement in power conversion efficiency, as compared with the device with a flat electrode. The improvement in PCE is directly correlated with the enhancement of light absorption in the active layer due to the light scattering and trapping effect induced by the randomly nanotextured electrodes, which is confirmed by a haze factor measurement and an external quantum efficiency characterization. The well-established contact interfaces between the etched electrodes and active layers are made, and thus reduce the impact on the open-circuit voltage and fill factor values in OPVs. We thus conclude that the method of light manipulation developed in this paper will provide a promising and practical approach to fabricate high-performance and low-cost OPVs.
      通信作者: 胡子阳, huziyang@nbu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11304170, 11374168, 51302137)、浙江省自然科学基金(批准号: LQ13F050007)、浙江省教育厅(批准号: Y201326905)、宁波市自然基金(批准号: 2013A610033)和宁波大学王宽诚基金资助的课题.
      Corresponding author: Hu Zi-Yang, huziyang@nbu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304170, 11374168, 51302137), the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ13F050007), the Foundation of Zhejiang Educational Commission, China (Grant No. Y201326905), and the Natural Science Foundation of Nignbo City, China (Grant No. 2013A610033). The authors also thank the sponsor by K. C. Wong Magna Fund in Ningbo University.
    [1]

    Yang Y, Chen W, Dou L, Chang W H, Duan H S, Bob B, Li G, Yang Y 2015 Nat. Photonics 9 190

    [2]

    He Z C, Xiao B, Liu F, Wu H B, Yang Y L, Xiao S, Wang C, Russell T P, Cao Y 2015 Nat. Photonics 9 174

    [3]

    Lin Y Z, Wang J Y, Zhang Z G, Bai H T, Li Y F, Zhu D B, Zhan X W 2015 Adv. Mater. 27 1170

    [4]

    Zilio S D, Tvingstedt K, Inganas O 2009 Microelectron. Eng. 86 1150

    [5]

    Lindquist N C, Luhman W A, Oh S H 2008 Appl. Phys. Lett. 93 3308

    [6]

    Atwater H A, Polman A 2010 Nat. Mater. 9 205

    [7]

    Sefunc M A, Okyay A K, Volkan D H 2011 Appl. Phys. Lett. 98 3117

    [8]

    Shen H H, Maes B 2011 Opt. Express 19 A1202

    [9]

    Abass A, Shen H H, Bienstman P 2011 J. Appl. Phys. 109 3111

    [10]

    Ferry V E, Sweatlock L A, Pacifici D 2008 Nano Lett. 8 4391

    [11]

    Ko D H, Tumbleston J R, Zhang L 2009 Nano Lett. 9 2742

    [12]

    Chen J Y, Yu M H 2014 Appl. Mater. Interfaces 6 6164

    [13]

    Lee J H, Kim D W, Jang H, Choi J K, Geng J X, Jung J W, Yoon S C, Jung H T 2009 Small 19 2139

    [14]

    Chao Y C, Zhan F M, Li H D 2014 RSC Adv. 4 30881

    [15]

    Chou C H, Chen F C 2014 Nanoscale 6 8444

    [16]

    Yu X M, Zhao J, Hou G F, Zhang J J, Zhang X D, Zhao Y 2013 Acta Phys. Sin. 62 120101 (in Chinese) [于晓明赵静, 侯国付, 张建军, 张晓丹, 赵颖 2013 物理学报 62 120101]

    [17]

    Hou G F, Xue J M, Yuan Y J, Zhang X D, Sun J, Chen X L, Geng X H, Zhao Y 2012 Acta Phys. Sin. 61 058403 (in Chinese) [侯国付, 薛俊明, 袁育杰, 张晓丹, 孙建, 陈新亮, 耿新华, 赵颖 2012 物理学报 61 058403]

    [18]

    Wang Y, Zhang X, Bai L, Huang Q, Wei C, Zhao Y 2012 Appl. Phys. Lett. 100 263508

    [19]

    Hu Z Y, Zhang J J, Zhao Y 2012 J. Appl. Phys. 111 104516

    [20]

    Niggemann M, Glatthaar M, Gombert A, Hinsch A, Wittwer V 2004 Thin Solid Films 619 451

    [21]

    Niggemann M, Glatthaar M, Lewer P, Muller C, Wagner J, Gombert A 2006 Thin Solid Films 628 511

  • [1]

    Yang Y, Chen W, Dou L, Chang W H, Duan H S, Bob B, Li G, Yang Y 2015 Nat. Photonics 9 190

    [2]

    He Z C, Xiao B, Liu F, Wu H B, Yang Y L, Xiao S, Wang C, Russell T P, Cao Y 2015 Nat. Photonics 9 174

    [3]

    Lin Y Z, Wang J Y, Zhang Z G, Bai H T, Li Y F, Zhu D B, Zhan X W 2015 Adv. Mater. 27 1170

    [4]

    Zilio S D, Tvingstedt K, Inganas O 2009 Microelectron. Eng. 86 1150

    [5]

    Lindquist N C, Luhman W A, Oh S H 2008 Appl. Phys. Lett. 93 3308

    [6]

    Atwater H A, Polman A 2010 Nat. Mater. 9 205

    [7]

    Sefunc M A, Okyay A K, Volkan D H 2011 Appl. Phys. Lett. 98 3117

    [8]

    Shen H H, Maes B 2011 Opt. Express 19 A1202

    [9]

    Abass A, Shen H H, Bienstman P 2011 J. Appl. Phys. 109 3111

    [10]

    Ferry V E, Sweatlock L A, Pacifici D 2008 Nano Lett. 8 4391

    [11]

    Ko D H, Tumbleston J R, Zhang L 2009 Nano Lett. 9 2742

    [12]

    Chen J Y, Yu M H 2014 Appl. Mater. Interfaces 6 6164

    [13]

    Lee J H, Kim D W, Jang H, Choi J K, Geng J X, Jung J W, Yoon S C, Jung H T 2009 Small 19 2139

    [14]

    Chao Y C, Zhan F M, Li H D 2014 RSC Adv. 4 30881

    [15]

    Chou C H, Chen F C 2014 Nanoscale 6 8444

    [16]

    Yu X M, Zhao J, Hou G F, Zhang J J, Zhang X D, Zhao Y 2013 Acta Phys. Sin. 62 120101 (in Chinese) [于晓明赵静, 侯国付, 张建军, 张晓丹, 赵颖 2013 物理学报 62 120101]

    [17]

    Hou G F, Xue J M, Yuan Y J, Zhang X D, Sun J, Chen X L, Geng X H, Zhao Y 2012 Acta Phys. Sin. 61 058403 (in Chinese) [侯国付, 薛俊明, 袁育杰, 张晓丹, 孙建, 陈新亮, 耿新华, 赵颖 2012 物理学报 61 058403]

    [18]

    Wang Y, Zhang X, Bai L, Huang Q, Wei C, Zhao Y 2012 Appl. Phys. Lett. 100 263508

    [19]

    Hu Z Y, Zhang J J, Zhao Y 2012 J. Appl. Phys. 111 104516

    [20]

    Niggemann M, Glatthaar M, Gombert A, Hinsch A, Wittwer V 2004 Thin Solid Films 619 451

    [21]

    Niggemann M, Glatthaar M, Lewer P, Muller C, Wagner J, Gombert A 2006 Thin Solid Films 628 511

  • [1] 孟婧, 高博文. 新型高效率和高稳定性钙钛矿/有机集成太阳电池光伏性能研究. 物理学报, 2023, 72(1): 018802. doi: 10.7498/aps.72.20221120
    [2] 李雪, 王亮, 熊建桥, 邵秋萍, 蒋荣, 陈淑芬. 金纳米四面体增强有机太阳电池光吸收及光伏性能研究. 物理学报, 2018, 67(24): 247201. doi: 10.7498/aps.67.20181502
    [3] 吴限量, 张德贤, 蔡宏琨, 周严, 倪牮, 张建军. 基于GaSb/CdS薄膜热光伏电池的器件设计. 物理学报, 2015, 64(9): 096102. doi: 10.7498/aps.64.096102
    [4] 陈丹丹, 徐飞, 曹汝楠, 蒋最敏, 马忠权, 杨洁, 杜汇伟, 洪峰. 铒铥共掺氧化锌薄膜近红外宽带发射及变温行为的研究. 物理学报, 2015, 64(4): 047104. doi: 10.7498/aps.64.047104
    [5] 张博, 张春峰, 李希友, 王睿, 肖敏. 单线态分裂的超快光谱学研究. 物理学报, 2015, 64(9): 094210. doi: 10.7498/aps.64.094210
    [6] 陈明, 周细应, 毛秀娟, 邵佳佳, 杨国良. 外加磁场对射频磁控溅射制备铝掺杂氧化锌薄膜影响的研究. 物理学报, 2014, 63(9): 098103. doi: 10.7498/aps.63.098103
    [7] 朱顺明, 顾然, 黄时敏, 姚峥嵘, 张阳, 陈斌, 毛昊源, 顾书林, 叶建东, 郑有炓. 金属有机源化学气相沉积法生长氧化锌薄膜中氢气的作用及其机理. 物理学报, 2014, 63(11): 118103. doi: 10.7498/aps.63.118103
    [8] 王利, 张晓丹, 杨旭, 魏长春, 张德坤, 王广才, 孙建, 赵颖. 高绒度掺硼氧化锌透明导电薄膜用作非晶硅太阳电池前电极的研究. 物理学报, 2014, 63(2): 028801. doi: 10.7498/aps.63.028801
    [9] 于晓明, 赵静, 侯国付, 张建军, 张晓丹, 赵颖. PIN型和NIP型硅薄膜太阳电池中绒面陷光结构和陷光性能研究. 物理学报, 2013, 62(12): 120101. doi: 10.7498/aps.62.120101
    [10] 杨少鹏, 李娜, 李光, 史江波, 李晓苇, 傅广生. 混合溶剂对P3HT:PCBM基太阳能电池的影响. 物理学报, 2013, 62(1): 014702. doi: 10.7498/aps.62.014702
    [11] 张金玲, 吕英华, 喇东升, 廖蕾, 白雪冬. 氧化锌纳米线的紫外光耦合增强场电子发射特性. 物理学报, 2012, 61(12): 128503. doi: 10.7498/aps.61.128503
    [12] 高博文, 高潮, 阙文修, 韦玮. 新型高效聚合物/富勒烯有机光伏电池研究进展. 物理学报, 2012, 61(19): 194213. doi: 10.7498/aps.61.194213
    [13] 陈超, 冀勇, 郜小勇, 赵孟珂, 马姣民, 张增院, 卢景霄. 直流脉冲磁控反应溅射技术制备掺铝氧化锌薄膜的研究. 物理学报, 2012, 61(3): 036104. doi: 10.7498/aps.61.036104
    [14] 李博, 邵剑峰. 瞬态光电流对有机薄膜光伏器件中肖特基接触的研究. 物理学报, 2012, 61(7): 077301. doi: 10.7498/aps.61.077301
    [15] 李林娜, 陈新亮, 王斐, 孙建, 张德坤, 耿新华, 赵颖. H2 气对脉冲磁控溅射铝掺杂氧化锌薄膜性能的影响. 物理学报, 2011, 60(6): 067304. doi: 10.7498/aps.60.067304
    [16] 崔秀芝, 张天冲, 梅增霞, 刘章龙, 刘尧平, 郭阳, 苏希玉, 薛其坤, 杜小龙. 湿法刻蚀对Si基片孔点阵及ZnO外延薄膜周期形貌的影响. 物理学报, 2009, 58(1): 309-314. doi: 10.7498/aps.58.309
    [17] 封 伟, 高中扩. 有机光伏电池物理性能的模拟. 物理学报, 2008, 57(4): 2567-2573. doi: 10.7498/aps.57.2567
    [18] 王长顺, 潘 煦, Urisu Tsuneo. 同步辐射光激励的二氧化硅薄膜刻蚀研究. 物理学报, 2006, 55(11): 6163-6167. doi: 10.7498/aps.55.6163
    [19] 辛显双, 周百斌, 吕树臣, 苏文辉. 掺铕纳米氧化锌的制备及其发光性质. 物理学报, 2005, 54(4): 1859-1862. doi: 10.7498/aps.54.1859
    [20] 封伟, 曹猛, 韦玮, 吴洪才, 万梅香, 吉野胜美. 有机聚合物受体给体复合体薄膜光伏电池性能研究. 物理学报, 2001, 50(6): 1157-1162. doi: 10.7498/aps.50.1157
计量
  • 文章访问数:  4934
  • PDF下载量:  237
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-21
  • 修回日期:  2015-05-05
  • 刊出日期:  2015-09-05

/

返回文章
返回