搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大型水轮发电机冷却方式综合评价方法的研究

滕启治 谭欣 武紫玉 沈俊 王海峰

引用本文:
Citation:

大型水轮发电机冷却方式综合评价方法的研究

滕启治, 谭欣, 武紫玉, 沈俊, 王海峰

Comprehensive evaluation method in the cooling mode of large-scale hydro-generators

Teng Qi-Zhi, Tan Xin, Wu Zi-Yu, Shen Jun, Wang Hai-Feng
PDF
导出引用
  • 随着水轮发电机的大型化发展, 对发电机冷却技术的要求也越来越高. 不同冷却方式不仅会影响水轮发电机的结构, 同时也会影响发电机的能耗和可靠性. 本文首先对水轮发电机三种常见冷却方式进行了定性对比分析, 然后提出基于层次分析法的水轮发电机冷却方式综合评价方法. 最后, 利用该方法对李家峡400 MW空冷机组和蒸发冷却机组进行了综合评价, 评价结果表明蒸发冷却方式优于空冷方式, 本文所提出的评价方法能够定量计算冷却方式带来的水轮发电机性能差异, 为水轮发电机的节能改造提供了指导依据.
    With the development of large-scale hydro-generators, large hydro-generator cooling technology is increasingly demanded. Different cooling method will not only affect the structure of hydro-generators, also it will affect the energy consumption and reliability of the generators. The commonly large-scale hydro-generator cooling method includes: air cooling, water cooling, and evaporative cooling methods. This paper analyzes the principle of the three cooling methods and describes qualitatively the advantages and disadvantages of them. The air cooling hydro-generator structure is simple, but the generator operating temperature is high; the water-cooling method has a certain superior in cooling performance, but it requires more auxiliary equipments, and has higher equipment failure rates. The evaporative cooling method is a recently developed cooling technique. It not only has a remarkable cooling effect, but also can decrease the equipment failure rates and the cost of maintenance. In order to build a comprehensive model to assess the three hydro-generator cooling methods, this paper proposes a comprehensive evaluation method based on AHP. The method includes 11 indexes of resource consumption, energy consumption and reliability to assess the influence of cooling ways. The energy saving influence of all the 11 indicators are calculated by using the AHP comprehensive evaluation. Finally, comparison between a 400 MW air cooling and an evaporative cooling hydro-generators at Lijiaxia hydropower Station are made using the proposed method. Evaluation results indicate that in terms of daily operation, the energy saving of the evaporative cooling hydro-generator can be more than 300 tons standard coal equivalent per year as compared with that of air cooling generator. In terms of maintenance, the evaporative cooling method can save more than 5000 tons of standard coal equivalent per year. The comprehensive evaluation results show that the evaporative cooling method is significantly better than the air cooling. It can be seen that the proposed evaluation method may quantitatively calculate the merits of hydro-generator caused by cooling method, which provides guidance to select and improve cooling method of hydro-generator.
      通信作者: 王海峰, wanghf@mail.iee.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 51177157, 51322605)资助的课题.
      Corresponding author: Wang Hai-Feng, wanghf@mail.iee.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 51177157, 51322605).
    [1]

    China Society for Hydropower Engineering 2012 Science and technology development report of Chinese hydropower (Beijing: China Electric Power Press) chapt. 1 (in Chinese) [中国水力发电工程学会 2012 中国水力发电科学技术发展报告(北京: 中国电力出版社)第一章]

    [2]

    Yan Y Z 2009 Yangtze River. 40 37 (in Chinese) [阎永忠. 2009 人民长江 40 37]

    [3]

    apehko H B P 1959 Acta Phys. Sin. 15 246 (in Chinese) [H. B 查林柯 1959 物理学报 15 246]

    [4]

    Yu H, Liu Z, Li Y J 2013 Acta Phys. Sin. 62 020204 (in Chinese) [于会, 刘尊, 李勇军 2013 物理学报 62 020204]

    [5]

    Yuan D F, Liang B 2008 Large Electric Machine and Hydraulic Turbine. 2008(1) 1 (in Chinese) [袁达夫, 梁波 2008 大电机技术 2008(1) 1]

    [6]

    Li G D 2006 Large Electric Machine and Hydraulic Turbine. 2006(3) 1 (in Chinese) [李广德 2006 大电机技术 2006(3) 1]

    [7]

    Saaty T L 1978 Mathematics and Computers in Simulation 20 147

    [8]

    Li H W, Zhou Y L, Liu X, Sun B 2012 Acta Phys. Sin. 61 030508 (in Chinese) [李洪伟, 周云龙, 刘旭, 孙斌 2012 物理学报 61 030508]

    [9]

    Zhang D S, Yuan J Y 2005 Water Power 31 48 (in Chinese) [张东胜, 袁佳毅. 2005 水力发电 31 48]

  • [1]

    China Society for Hydropower Engineering 2012 Science and technology development report of Chinese hydropower (Beijing: China Electric Power Press) chapt. 1 (in Chinese) [中国水力发电工程学会 2012 中国水力发电科学技术发展报告(北京: 中国电力出版社)第一章]

    [2]

    Yan Y Z 2009 Yangtze River. 40 37 (in Chinese) [阎永忠. 2009 人民长江 40 37]

    [3]

    apehko H B P 1959 Acta Phys. Sin. 15 246 (in Chinese) [H. B 查林柯 1959 物理学报 15 246]

    [4]

    Yu H, Liu Z, Li Y J 2013 Acta Phys. Sin. 62 020204 (in Chinese) [于会, 刘尊, 李勇军 2013 物理学报 62 020204]

    [5]

    Yuan D F, Liang B 2008 Large Electric Machine and Hydraulic Turbine. 2008(1) 1 (in Chinese) [袁达夫, 梁波 2008 大电机技术 2008(1) 1]

    [6]

    Li G D 2006 Large Electric Machine and Hydraulic Turbine. 2006(3) 1 (in Chinese) [李广德 2006 大电机技术 2006(3) 1]

    [7]

    Saaty T L 1978 Mathematics and Computers in Simulation 20 147

    [8]

    Li H W, Zhou Y L, Liu X, Sun B 2012 Acta Phys. Sin. 61 030508 (in Chinese) [李洪伟, 周云龙, 刘旭, 孙斌 2012 物理学报 61 030508]

    [9]

    Zhang D S, Yuan J Y 2005 Water Power 31 48 (in Chinese) [张东胜, 袁佳毅. 2005 水力发电 31 48]

  • [1] 钟哲强, 母杰, 王逍, 张彬. 基于紧聚焦方式的阵列光束相干合成特性分析. 物理学报, 2020, 69(9): 094204. doi: 10.7498/aps.69.20200034
    [2] 丁亚飞, 陈翔宇. 基于摩擦纳米发电机的可穿戴能源器件. 物理学报, 2020, 69(17): 170202. doi: 10.7498/aps.69.20200867
    [3] 楚化强, 冯艳, 曹文健, 任飞, 顾明言. 灰气体加权和辐射模型综合评估及分析. 物理学报, 2017, 66(9): 094207. doi: 10.7498/aps.66.094207
    [4] 杨黎晖, 葛扬, 马西奎. 永磁同步风力发电机随机分岔现象的全局分析. 物理学报, 2017, 66(19): 190501. doi: 10.7498/aps.66.190501
    [5] 潘昕浓, 王革丽, 杨培才. 利用慢特征分析法提取层次结构系统中的外强迫. 物理学报, 2017, 66(8): 080501. doi: 10.7498/aps.66.080501
    [6] 梁潇, 钱志鸿, 田洪亮, 王雪. 基于马尔可夫决策模型的异构无线网络切换选择算法. 物理学报, 2016, 65(23): 236402. doi: 10.7498/aps.65.236402
    [7] 奚彩萍, 张淑宁, 熊刚, 赵惠昌. 多重分形降趋波动分析法和移动平均法的分形谱算法对比分析. 物理学报, 2015, 64(13): 136403. doi: 10.7498/aps.64.136403
    [8] 杨益飞, 骆敏舟, 邢绍邦, 韩晓新, 朱熀秋. 永磁同步发电机混沌运动分析及最优输出反馈H∞控制. 物理学报, 2015, 64(4): 040504. doi: 10.7498/aps.64.040504
    [9] 韩祥临, 欧阳成, 宋涛, 戴孙圣. 交通拥堵相变问题的同伦分析法. 物理学报, 2013, 62(17): 170203. doi: 10.7498/aps.62.170203
    [10] 吴忠强, 杨阳, 徐纯华. 混沌状态下永磁同步发电机的故障诊断——LMI法研究. 物理学报, 2013, 62(15): 150507. doi: 10.7498/aps.62.150507
    [11] 于会, 刘尊, 李勇军. 基于多属性决策的复杂网络节点重要性综合评价方法. 物理学报, 2013, 62(2): 020204. doi: 10.7498/aps.62.020204
    [12] 吕天阳, 谢文艳, 郑纬民, 朴秀峰. 加权复杂网络社团的评价指标及其发现算法分析. 物理学报, 2012, 61(21): 210511. doi: 10.7498/aps.61.210511
    [13] 余洋, 米增强, 刘兴杰. 双馈风力发电机混沌运动分析及滑模控制混沌同步. 物理学报, 2011, 60(7): 070509. doi: 10.7498/aps.60.070509
    [14] 石玉仁, 杨红娟. 同伦分析法在求解耗散系统中的应用. 物理学报, 2010, 59(1): 67-74. doi: 10.7498/aps.59.67
    [15] 王娜, 陈克安, 黄凰. 水下噪声听觉属性的主观评价与分析. 物理学报, 2009, 58(10): 7330-7338. doi: 10.7498/aps.58.7330
    [16] 杨红娟, 石玉仁, 段文山, 吕克璞. 非线性演化方程孤立波的同伦分析法求解. 物理学报, 2007, 56(6): 3064-3069. doi: 10.7498/aps.56.3064
    [17] 石玉仁, 汪映海, 杨红娟, 段文山. 高维非线性演化方程孤立波的同伦分析法求解. 物理学报, 2007, 56(12): 6791-6796. doi: 10.7498/aps.56.6791
    [18] 石玉仁, 许新建, 吴枝喜, 汪映海, 杨红娟, 段文山, 吕克璞. 同伦分析法在求解非线性演化方程中的应用. 物理学报, 2006, 55(4): 1555-1560. doi: 10.7498/aps.55.1555
    [19] 施士元;杨铭珍. 积分强度的光电定量光谱分析法. 物理学报, 1956, 12(6): 577-584. doi: 10.7498/aps.12.577
    [20] 陈茂康. 一种脈流发电机之初记. 物理学报, 1933, 1(1): 87-90. doi: 10.7498/aps.1.87
计量
  • 文章访问数:  4871
  • PDF下载量:  196
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-20
  • 修回日期:  2015-05-04
  • 刊出日期:  2015-09-05

/

返回文章
返回