搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mg-Y-Zn合金三元金属间化合物的电子结构及其相稳定性的第一性原理研究

马振宁 蒋敏 王磊

引用本文:
Citation:

Mg-Y-Zn合金三元金属间化合物的电子结构及其相稳定性的第一性原理研究

马振宁, 蒋敏, 王磊

First-principles study of electronic structures and phase stabilities of ternary intermetallic compounds in the Mg-Y-Zn alloys

Ma Zhen-Ning, Jiang Min, Wang Lei
PDF
导出引用
  • 采用基于密度泛函的第一性原理平面波赝势方法计算Mg-Y-Zn合金三元金属间化合物X-Mg12YZn 相和W-Mg3Y2Zn3相的晶格常数、形成焓和电子结构. 形成焓的计算结果表明, X-Mg12YZn相和W-Mg3Y2Zn3相都具有负的形成焓, 并且W-Mg3Y2Zn3相的形成焓更低; 电子结构的计算分析表明, W-Mg3Y2Zn3相成键峰主要来自Mg的2p轨道、Zn的3p轨道和Y的4d轨道的贡献. 而X-Mg12YZn相成键峰主要来自Mg的3s和2p轨道、Zn的3p轨道和Y的4d轨道的贡献. 对W-Mg3Y2Zn3相(011)面和X-Mg12YZn相(0001)面的电荷密度分析表明, 两相中Zn-Y原子间都形成了共价键, 且W-Mg3Y2Zn3相的共价性比X-Mg12YZn相的共价性更强. 在费米能级低能级处, W-Mg3Y2Zn3相具有更多的成键电子数, 决定了W-Mg3Y2Zn3相比X-Mg12YZn相有更好的相稳定性.
    In the paper, the first-principles pseudopotential plane-wave method based on density functional theory is used to investigate the crystal structures, enthalpies of formation and electronic structures of X-Mg12YZn phase and W-Mg3Y2Zn3 phase in Mg-Y-Zn alloys. The obtained lattice constants of two phases are in good agreement with the available experimental values, which can reasonably reflect the accuracy of theoretical calculation. The calculated enthalpies of formation indicate that the W-Mg3Y2Zn3 and X-Mg12YZn phases have negative enthalpies of formation, which are-0.2787 eV/atom and-0.0268 eV/atom respectively. Both phases can form stable structures relative to single crystals Mg, Y and Zn, and the enthalpy of formation of W-Mg3Y2Zn3 phase is lower than that of X-Mg12YZn phase. The results for density of states show that the bonding of W-Mg3Y2Zn3 phase occurs mainly among the valence electrons of Mg 2p, Zn 3p and Y 4d orbits, the bonding peaks between-2.53 and 0 eV are derived from the hybridization of Mg 2p, Zn 3p and Y 4d orbits, the peaks between 5.07 and 7.51 eV predominantly originate from the hybridization of Mg 2p and Y 4d orbits. However, the bonding of X-Mg12YZn phase is mainly among the valence electrons of Mg 3s, Mg 2p, Zn 3p and Y 4d orbits. The bonding peaks between-2.30 and 0 eV originate mainly from 2p, 3p, and 4d orbit hybridization of Mg, Zn and Y, the peaks between 0 and 2.08 eV originate from the hybridization of Mg 3s, Mg 2p, Zn 3p and Y 4d orbits. At the same time, there is a pseudo-gap near each Fermi level of W-Mg3Y2Zn3 and X-Mg12YZn phases, which implies the presence of covalent bonding in the two phases. In addition, the charge densities respectively on (011) plane of W-Mg3Y2Zn3 phase and (0001) plane of X-Mg12YZn phase are analyzed, and the results indicate that the Zn-Y band exhibits covalent features in W-Mg3Y2Zn3 phase and X-Mg12YZn phase, the covalent bonding of W-Mg3Y2Zn3 phase is stronger than that of X-Mg12YZn phase. Compared with X-Mg12YZn phase, W-Mg3Y2Zn3 phase has a good phase stability attributed to its more bonding electron numbers in a low-energy region of the Fermi level.
      通信作者: 蒋敏, Jiangm@smm.neu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 50971036)和国家高技术研究发展计划(批准号: 2013AA031601)资助的课题.
      Corresponding author: Jiang Min, Jiangm@smm.neu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 50971036), and the National High Technology Research and Development Program of China (Grant No. 2013AA031601).
    [1]

    Saal James E, Wolverton C 2014 Acta Mater. 68 325

    [2]

    Duan P P, Xing H, Chen Z, Hao G H, Wang B H, Jin K X 2015 Acta Phys. Sin. 64 060201(in Chinese) [段培培, 邢辉, 陈志, 郝冠华, 王碧涵, 金克新 2015 物理学报 64 060201]

    [3]

    Rosalie J M, Somekawa H, Singh A, Mukai T 2013 J. Alloys. Compd. 550 114

    [4]

    Shin D, Wolverton C 2010 Scripta Mater. 63 680

    [5]

    Zhang Q, Fu L, Fan T W, Tang B Y, Peng L M, Ding W J 2013 Physica B 416 39

    [6]

    Tane M, Nagai Y, Kimizuka H, Hagihara K, Kawamura Y 2013 Acta Mater. 61 6338

    [7]

    Wu M M, Jiang Y, Wang J W, Wu J, Tang B Y, Peng L M, Ding W J 2011 J. Alloys Compd 509 2885

    [8]

    Kawamura Y, Hayashi K, Inoue A, Masumoto T 2001 Mater. Trans. 42 1172

    [9]

    Abe E, Kawamura Y, Hayashi K, Inoue A 2002 Acta Mater. 50 3845

    [10]

    Luo Z P, Zhang S Q 2000 J. Mater. Sci. Lett. 19 813

    [11]

    Matsuda M, Ii S, Kawamura Y, IkuharaY, Nishida M 2005 Mater. Sci. Eng. A 393 269

    [12]

    Gröbner J, Kozlov A, Fang X Y, Geng J, Nie J F, Schmid-Fetzer R 2012 Acta Mater. 60 5948

    [13]

    Sahlberg M, Andersson Y 2007 J. Alloys. Compd. 446 134

    [14]

    Zhu Y M, Morton A J, Nie J F 2010 Acta Mater. 58 2936

    [15]

    Zheng S W, Fan G H, Zhang T, Pi H, Xu K F 2014 Acta Phys. Sin. 63 087101(in Chinese) [郑树文, 范广涵, 张涛, 皮辉, 俆开放 2014 物理学报 63 087101]

    [16]

    Jia M Z, Wang H Y, Chen Y Z, Ma C L, Wang H 2015 Acta Phys. Sin. 64 087101(in Chinese) [嘉明珍, 王红艳, 陈元正, 马存良, 王辉 2015 物理学报 64 087101]

    [17]

    Zhang J T, Li J, Sheng Y 2014 Chin. Phys. B 23 013103

    [18]

    Zheng S W, He M, Li S T, Zhang Y 2014 Chin. Phys. B 23 087101

    [19]

    Li Z L, An X Y, Cheng X L, Wang X M, Zhang H, Peng L P, Wu W D 2014 Chin. Phys. B 23 037104

    [20]

    Yu Z Q, Xu Z M, Wu X H 2014 Chin. Phys. B 23 107102

    [21]

    Chen P, Li D L, Yi J X, Tang B Y, Peng L M, DingW J 2009 J. Alloys. Compd. 485 672

    [22]

    Tang P Y, Tang B Y, Peng L M, Ding W J 2012 Mater. Chem. Phys. 131 634

    [23]

    Tang P Y, Wu M M, Tang B Y, Wang J W, Peng L M, Ding W J 2011 Trans. Nonferrous Met. Soc. China 21 801

    [24]

    Iikubo S, Matsuda K, Ohtani H 2012 Phys. Rev. B 86 054105

    [25]

    Ma S Y, Liu L M, Wang S Q 2014 J. Mater. Sci. 49 737

    [26]

    Wang W Y, Shang S L, Wang Y Darling K A Kecskes L J, Mathaudhu S N, Hui X D, Liu Z K 2014 J. Alloys. Compd. 586 656

    [27]

    Kimizuka H, Fronzia M, Ogata S 2013 Scripta Mater. 69 594

    [28]

    Tang B Y, Wang N, Yu W Y, Zeng X Q, Ding W J 2008 Acta Mater. 56 3353

    [29]

    Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272

    [30]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [31]

    Kresse G, Furthller J 1996 Comput. Mater. Sci. 6 15

    [32]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [33]

    Padezhnova E M, Melnik E V, Miliyevskiy R A 1982 Russ. Metall. 4 185

    [34]

    Zhu Y M , Wayland M , Morton A J, Oh-ishi K, Hono K, Nie J F 2009 Scripta Mater. 60 980

    [35]

    Sahu B R 1997 Mater. Sci. Eng. B 49 74

    [36]

    Yi J X, Tang B Yu, Chen P, Li D L, Peng L M, Ding W J 2011 J. Alloys. Compd. 509 669

    [37]

    Fu C L, Wang X, Ye Y Y, Ho K M 1999 Intermetallics 7 179

    [38]

    Nylén J, García F J, Mosel B D, Pöttgen R, Häussermann U 2004 Solid State Sci 6 147

  • [1]

    Saal James E, Wolverton C 2014 Acta Mater. 68 325

    [2]

    Duan P P, Xing H, Chen Z, Hao G H, Wang B H, Jin K X 2015 Acta Phys. Sin. 64 060201(in Chinese) [段培培, 邢辉, 陈志, 郝冠华, 王碧涵, 金克新 2015 物理学报 64 060201]

    [3]

    Rosalie J M, Somekawa H, Singh A, Mukai T 2013 J. Alloys. Compd. 550 114

    [4]

    Shin D, Wolverton C 2010 Scripta Mater. 63 680

    [5]

    Zhang Q, Fu L, Fan T W, Tang B Y, Peng L M, Ding W J 2013 Physica B 416 39

    [6]

    Tane M, Nagai Y, Kimizuka H, Hagihara K, Kawamura Y 2013 Acta Mater. 61 6338

    [7]

    Wu M M, Jiang Y, Wang J W, Wu J, Tang B Y, Peng L M, Ding W J 2011 J. Alloys Compd 509 2885

    [8]

    Kawamura Y, Hayashi K, Inoue A, Masumoto T 2001 Mater. Trans. 42 1172

    [9]

    Abe E, Kawamura Y, Hayashi K, Inoue A 2002 Acta Mater. 50 3845

    [10]

    Luo Z P, Zhang S Q 2000 J. Mater. Sci. Lett. 19 813

    [11]

    Matsuda M, Ii S, Kawamura Y, IkuharaY, Nishida M 2005 Mater. Sci. Eng. A 393 269

    [12]

    Gröbner J, Kozlov A, Fang X Y, Geng J, Nie J F, Schmid-Fetzer R 2012 Acta Mater. 60 5948

    [13]

    Sahlberg M, Andersson Y 2007 J. Alloys. Compd. 446 134

    [14]

    Zhu Y M, Morton A J, Nie J F 2010 Acta Mater. 58 2936

    [15]

    Zheng S W, Fan G H, Zhang T, Pi H, Xu K F 2014 Acta Phys. Sin. 63 087101(in Chinese) [郑树文, 范广涵, 张涛, 皮辉, 俆开放 2014 物理学报 63 087101]

    [16]

    Jia M Z, Wang H Y, Chen Y Z, Ma C L, Wang H 2015 Acta Phys. Sin. 64 087101(in Chinese) [嘉明珍, 王红艳, 陈元正, 马存良, 王辉 2015 物理学报 64 087101]

    [17]

    Zhang J T, Li J, Sheng Y 2014 Chin. Phys. B 23 013103

    [18]

    Zheng S W, He M, Li S T, Zhang Y 2014 Chin. Phys. B 23 087101

    [19]

    Li Z L, An X Y, Cheng X L, Wang X M, Zhang H, Peng L P, Wu W D 2014 Chin. Phys. B 23 037104

    [20]

    Yu Z Q, Xu Z M, Wu X H 2014 Chin. Phys. B 23 107102

    [21]

    Chen P, Li D L, Yi J X, Tang B Y, Peng L M, DingW J 2009 J. Alloys. Compd. 485 672

    [22]

    Tang P Y, Tang B Y, Peng L M, Ding W J 2012 Mater. Chem. Phys. 131 634

    [23]

    Tang P Y, Wu M M, Tang B Y, Wang J W, Peng L M, Ding W J 2011 Trans. Nonferrous Met. Soc. China 21 801

    [24]

    Iikubo S, Matsuda K, Ohtani H 2012 Phys. Rev. B 86 054105

    [25]

    Ma S Y, Liu L M, Wang S Q 2014 J. Mater. Sci. 49 737

    [26]

    Wang W Y, Shang S L, Wang Y Darling K A Kecskes L J, Mathaudhu S N, Hui X D, Liu Z K 2014 J. Alloys. Compd. 586 656

    [27]

    Kimizuka H, Fronzia M, Ogata S 2013 Scripta Mater. 69 594

    [28]

    Tang B Y, Wang N, Yu W Y, Zeng X Q, Ding W J 2008 Acta Mater. 56 3353

    [29]

    Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272

    [30]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [31]

    Kresse G, Furthller J 1996 Comput. Mater. Sci. 6 15

    [32]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [33]

    Padezhnova E M, Melnik E V, Miliyevskiy R A 1982 Russ. Metall. 4 185

    [34]

    Zhu Y M , Wayland M , Morton A J, Oh-ishi K, Hono K, Nie J F 2009 Scripta Mater. 60 980

    [35]

    Sahu B R 1997 Mater. Sci. Eng. B 49 74

    [36]

    Yi J X, Tang B Yu, Chen P, Li D L, Peng L M, Ding W J 2011 J. Alloys. Compd. 509 669

    [37]

    Fu C L, Wang X, Ye Y Y, Ho K M 1999 Intermetallics 7 179

    [38]

    Nylén J, García F J, Mosel B D, Pöttgen R, Häussermann U 2004 Solid State Sci 6 147

  • [1] 周金萍, 李春梅, 姜博, 黄仁忠. Co和Ni过量影响Co2NiGa合金晶体结构及相稳定性的第一性原理研究. 物理学报, 2023, 72(15): 156301. doi: 10.7498/aps.72.20230626
    [2] 杨顺杰, 李春梅, 周金萍. 磁无序及合金化效应影响Co2CrZ (Z = Ga, Si, Ge)合金相稳定性和弹性常数的第一性原理研究. 物理学报, 2022, 71(10): 106201. doi: 10.7498/aps.71.20212254
    [3] 张硕鑫, 刘士余, 严达利, 余浅, 任海涛, 于彬, 李德军. Ta1–xHfxC和Ta1–xZrxC固溶体的结构稳定性和力学性质的第一性原理研究. 物理学报, 2021, 70(11): 117102. doi: 10.7498/aps.70.20210191
    [4] 林洪斌, 林春, 陈越, 钟克华, 张健敏, 许桂贵, 黄志高. 第一性原理研究Mg掺杂对LiCoO2正极材料结构稳定性及其电子结构的影响. 物理学报, 2021, 70(13): 138201. doi: 10.7498/aps.70.20210064
    [5] 胡洁琼, 谢明, 陈家林, 刘满门, 陈永泰, 王松, 王塞北, 李爱坤. Ti3AC2相(A = Si,Sn,Al,Ge)电子结构、弹性性质的第一性原理研究. 物理学报, 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [6] 马振宁, 周全, 汪青杰, 王逊, 王磊. Mg-Y-Cu合金长周期有序相热力学稳定性及其电子结构的第一性原理研究. 物理学报, 2016, 65(23): 236101. doi: 10.7498/aps.65.236101
    [7] 王明军, 李春福, 文平, 张凤春, 王垚, 刘恩佐. Cr,Mo,Ni在-Fe(C)中的键合性质及对相结构稳定性的影响. 物理学报, 2016, 65(3): 037101. doi: 10.7498/aps.65.037101
    [8] 沈杰, 魏宾, 周静, Shen Shirley Zhiqi, 薛广杰, 刘韩星, 陈文. Ba(Mg1/3Nb2/3)O3电子结构第一性原理计算及光学性能研究. 物理学报, 2015, 64(21): 217801. doi: 10.7498/aps.64.217801
    [9] 赵佰强, 张耘, 邱晓燕, 王学维. Fe:Mg:LiNbO3晶体电子结构和吸收光谱的第一性原理研究. 物理学报, 2015, 64(12): 124210. doi: 10.7498/aps.64.124210
    [10] 杨建辉, 陈言星, 吴丽慧, 韦世豪. MC与Mn+1ACn稳定性与电子特征的第一性原理研究. 物理学报, 2014, 63(23): 237301. doi: 10.7498/aps.63.237301
    [11] 管东波, 毛健. Magnli相亚氧化钛Ti8O15的电子结构和光学性能的第一性原理研究. 物理学报, 2012, 61(1): 017102. doi: 10.7498/aps.61.017102
    [12] 李聪, 侯清玉, 张振铎, 赵春旺, 张冰. Sm-N共掺杂对锐钛矿相TiO2的电子结构和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [13] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究. 物理学报, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [14] 郑树文, 范广涵, 李述体, 张涛, 苏晨. Be1-xMgxO合金的能带特性与相结构稳定性研究. 物理学报, 2012, 61(23): 237101. doi: 10.7498/aps.61.237101
    [15] 余本海, 刘墨林, 陈东. 第一性原理研究Mg2 Si同质异相体的结构、电子结构和弹性性质. 物理学报, 2011, 60(8): 087105. doi: 10.7498/aps.60.087105
    [16] 文黎巍, 王玉梅, 裴慧霞, 丁俊. Sb系half-Heusler合金磁性及电子结构的第一性原理研究. 物理学报, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [17] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析. 物理学报, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [18] 罗礼进, 仲崇贵, 江学范, 方靖淮, 蒋青. Heusler合金Ni2MnSi的电子结构、磁性、压力响应及四方变形的第一性原理研究. 物理学报, 2010, 59(1): 521-526. doi: 10.7498/aps.59.521
    [19] 朱建新, 李永华, 孟繁玲, 刘常升, 郑伟涛, 王煜明. NiTi合金的第一性原理研究. 物理学报, 2008, 57(11): 7204-7209. doi: 10.7498/aps.57.7204
    [20] 刘娜娜, 宋仁伯, 孙翰英, 杜大伟. Mg2Sn电子结构及热力学性质的第一性原理计算. 物理学报, 2008, 57(11): 7145-7150. doi: 10.7498/aps.57.7145
计量
  • 文章访问数:  5938
  • PDF下载量:  403
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-06
  • 修回日期:  2015-05-23
  • 刊出日期:  2015-09-05

/

返回文章
返回