搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MgO/Pt界面对增强Co/Ni多层膜垂直磁各向异性及热稳定性的研究

俱海浪 向萍萍 王伟 李宝河

引用本文:
Citation:

MgO/Pt界面对增强Co/Ni多层膜垂直磁各向异性及热稳定性的研究

俱海浪, 向萍萍, 王伟, 李宝河

Enhancement of perpendicular magnetic anisotropy and thermal stability in Co/Ni multilayers by MgO/Pt interfaces

Ju Hai-Lang, Xiang Ping-Ping, Wang Wei, Li Bao-He
PDF
导出引用
  • 采用直流磁控溅射法在玻璃基片上制备了Pt底层和MgO/Pt双底层的Co/Ni多层膜样品, 通过反常霍尔效应研究了不同MgO厚度和退火温度对样品垂直磁各向异性(perpendicular magnetic anisotropy, PMA)的影响. 随着底层中MgO厚度的逐渐增加, 样品的矫顽力也随之增强, 霍尔电阻变化不大; 对样品进行退火处理后发现, 单纯Pt底层的Co/Ni多层膜随着退火温度的升高, 霍尔电阻逐渐降低, 矫顽力则迅速降低, 热稳定性较差; 而当MgO/Pt双底层的样品在200 ℃退火后矫顽力大幅增加, 霍尔电阻略微有所减小, 更高的退火温度使得Co和Ni合金化, 导致多层膜的PMA特征减弱.
    Co/Ni multilayers with Pt and MgO/Pt underlayer have been grown by means of magnetron sputtering and the perpendicular magnetic anisotropy (PMA) of the samples is studied using anomalous Hall effect (AHE). The Co/Ni multilayer has to be thermally stable to stabilize the PMA, which is studied by annealing treatment. In early researches of Co/Ni multilayes, the optimum sample with Pt underlayer was obtained as Pt(2 nm)/Co(0.2 nm)/Ni(0.4 nm)/Co(0.2 nm)/Pt(2 nm) with PMA in good performance. Thermal stability of the sample is studied in this paper by the Hall loop measurement of it after annealing. Results show that the remanence ratio and rectangular degree of the sample are kept well and the Hall resistance (RHall) has little change at the annealing temperature of 100 ℃. As the annealing temperature rising above 100 ℃, the PMA of Pt(2 nm)/Co(0.2 nm)/Ni(0.4 nm)/Co(0.2 nm)/Pt(2 nm) becomes weakened. Its coercivity (Hc) decreases rapidly and RHall reduces greatly. So the thermal stability of Pt(2 nm)/Co(0.2 nm)/Ni(0.4 nm)/Co(0.2 nm)/Pt(2 nm) will be poor and the PMA cannot be enhanced by annealing treatment. A series of samples with MgO/Pt underlayer are prepared with the thickness of Pt being fixed at 2 nm and that of MgO ranging from 1 to 5 nm. Thus the interface between amorphous insulation layer and metal layer is added to be used to enhance the PMA of the sample for the strong electron additive scattering. Magnetization reversal can be very rapid and the rectangular degree is kept very well, and furthermore, the remanence ratio of the samples can reach 100% so they all show good PMA.The Hc increases with increasing MgO underlayer and reaches the maximum value as the MgO thickness arrives at 4 nm, and the Hc of the sample MgO(4 nm)/Pt(2 nm)/Co(0.2 nm)/Ni(0.4 nm)/Co(0.2 nm)/Pt(2 nm) is 2.3 times that of Pt(2 nm)/Co(0.2 nm)/Ni(0.4 nm)/Co(0.2 nm)/Pt(2 nm), the RHall is up to 9% correspondingly. The roughnesses of Pt(2 nm)/Co(0.2 nm)/ Ni(0.4 nm)/Co(0.2 nm)/Pt(2 nm) and MgO(4 nm)/Pt(2 nm)/Co(0.2 nm) /Ni(0.4 nm)/Co(0.2 nm)/Pt(2 nm) are 0.192 nm and 0.115 nm respectively, as tested by AFM. Result shows that the roughness of the Co/Ni multilayer is greatly reduced so the PMA of the Co/Ni multilayer is enhanced remarkably after the addition of 4 nm MgO. The thermal stability of MgO(4 nm)/Pt(2 nm)/Co(0.2 nm)/Ni(0.4 nm)/Co(0.2 nm)/Pt(2 nm) is also studied. When the annealing temperature rises up to 200 ℃, the Hc reaches its maximum value i.e. 1.5 times that of the sample without MgO, and it is 3.5 times that of the sample with Pt underlayer only. This sample also show good thermal stability. Higher temperatures will result in intermixing of Co and Ni and diminish the PMA. After annealing at 400 ℃, the easy axis of the sample becomes in-plane. The anisotropy constant Keff of MgO(4 nm)/Pt(2 nm)/Co(0.2 nm)/Ni(0.4 nm)/Co(0.2 nm)/Pt(2 nm) is 8.2106 erg/cm3, and it has an increase of 15% in Pt(2 nm)/Co(0.2 nm)/ Ni(0.4 nm)/Co(0.2 nm)/Pt(2 nm), which shows that the sample has an excellent PMA.
      通信作者: 李宝河, lbhe@th.btbu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11174020, 51271211)和北京工商大学特色科研团队项目(批准号: 19008001076)资助的课题.
      Corresponding author: Li Bao-He, lbhe@th.btbu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174020, 51271211), and the Characteristic research team of Beijing Technology and Business University (Grant No. 19008001076).
    [1]

    Wang R X, He P B, Xiao Y C, Li J Y 2015 Acta Phys. Sin. 64 137201(in Chinese) [王日兴, 贺鹏斌, 肖运昌, 李建英 2015 物理学报 64 137201]

    [2]

    Kim D S, Jung K Y, Sung J J, Young J J, Hong J K, Lee B C, You C Y, Cho J H, Kim M Y, Rhie K 2015 J. M. M. M. 374 350

    [3]

    Mangin S, Henry Y, Ravelosona D, Katine J A, Fullerton E E 2009 Appl. Phys. Lett. 94 012502

    [4]

    Zhu T 2014 Chin. Phys. B 23 047504

    [5]

    Ding J J, Wu S B, Yang X F Zhu T 2015 Chin. Phys. B 24 027201

    [6]

    Johnson M T, Bloemen P J H, denBroeder F J A, deVries J J 1996 Rep. Prog. Phys. 59 1409

    [7]

    Ravelosona D, Lacour D, Katine J A, Terris B D, Chappert C 2005 Phys. Rev. Lett. 95 117203

    [8]

    Ravelosona D, Mangin S, Katine J A, Fullerton E E, Terris B D 2007 Appl. Phys. Lett. 90 072508

    [9]

    Fukami S, Suzuki T, Nakatani Y, Ishiwata N, Yamanouchi M, Ikeda S, Kasai N, Ohno H 2011 Appl. Phys. Lett. 98 082504

    [10]

    Wang R X, Xiao Y C, Zhao J L 2014 Acta Phys. Sin. 63 217601(in Chinese) [王日兴, 肖运昌, 赵婧莉 2014 物理学报 63 217601]

    [11]

    Zhang P, Xie K X, Lin W W, Wu D, Sang H 2014 Appl. Phys. Lett. 104 082404

    [12]

    Zhang Y, Zhao W S, Klein J O, Chappert C, Ravelosona D 2014 Appl. Phys. Lett. 104 032409

    [13]

    Ryzhanova N, Vedyayev A, Pertsova A, Dieny B 2009 Phys. Rev. B 80 024410

    [14]

    Manchon A, Ducruet C, Lombard L, Auffret S, Rodmacq B, Dien B y, Pizzini S, Vogel J, Uhlir V, Hochstrasser M, Panaccione G 2008 J. Appl. Phys. 104 043914

    [15]

    Ding L, Teng J, Wang X C, Feng C, Jiang Y, Yu G H, Wang S G, Ward R C C 2010 Appl. Phys. Lett. 96 052515

    [16]

    Zhang S L, Teng J, Zhang J Y, Liu Y, Li J W, Yu G H, Wang S G 2010 Appl. Phys. Lett. 97 222504

    [17]

    Yang E, Vincent M S, Matthew T M, David M B, Zhu J G 2013 J. Appl. Phys. 113 17C116

    [18]

    McGuire T R, Gambino R J, Handley R C O, The Hall Effect, Its Applications (Vol. 1) (New York: Plenum Publishing Corp.), 137, 1980

    [19]

    Carvello B, Ducruet C, Rodmacq B, Auffret S, Gautier E, Gaudin G, Dieny B 2009 Appl. Phys. Lett. 92 102508

    [20]

    Ju H L, Li B H, Wu Z F, Zhang F, Liu S, Yu G H 2015 Acta Phys. Sin. 64 097501(in Chinese) [俱海浪, 李宝河, 吴志芳, 张璠, 刘帅, 于广华 2015 物理学报 64 097501]

    [21]

    Young W O, Lee K D, Jeong J R, Park B G 2014 J. Appl. Phys. 115 17C724

  • [1]

    Wang R X, He P B, Xiao Y C, Li J Y 2015 Acta Phys. Sin. 64 137201(in Chinese) [王日兴, 贺鹏斌, 肖运昌, 李建英 2015 物理学报 64 137201]

    [2]

    Kim D S, Jung K Y, Sung J J, Young J J, Hong J K, Lee B C, You C Y, Cho J H, Kim M Y, Rhie K 2015 J. M. M. M. 374 350

    [3]

    Mangin S, Henry Y, Ravelosona D, Katine J A, Fullerton E E 2009 Appl. Phys. Lett. 94 012502

    [4]

    Zhu T 2014 Chin. Phys. B 23 047504

    [5]

    Ding J J, Wu S B, Yang X F Zhu T 2015 Chin. Phys. B 24 027201

    [6]

    Johnson M T, Bloemen P J H, denBroeder F J A, deVries J J 1996 Rep. Prog. Phys. 59 1409

    [7]

    Ravelosona D, Lacour D, Katine J A, Terris B D, Chappert C 2005 Phys. Rev. Lett. 95 117203

    [8]

    Ravelosona D, Mangin S, Katine J A, Fullerton E E, Terris B D 2007 Appl. Phys. Lett. 90 072508

    [9]

    Fukami S, Suzuki T, Nakatani Y, Ishiwata N, Yamanouchi M, Ikeda S, Kasai N, Ohno H 2011 Appl. Phys. Lett. 98 082504

    [10]

    Wang R X, Xiao Y C, Zhao J L 2014 Acta Phys. Sin. 63 217601(in Chinese) [王日兴, 肖运昌, 赵婧莉 2014 物理学报 63 217601]

    [11]

    Zhang P, Xie K X, Lin W W, Wu D, Sang H 2014 Appl. Phys. Lett. 104 082404

    [12]

    Zhang Y, Zhao W S, Klein J O, Chappert C, Ravelosona D 2014 Appl. Phys. Lett. 104 032409

    [13]

    Ryzhanova N, Vedyayev A, Pertsova A, Dieny B 2009 Phys. Rev. B 80 024410

    [14]

    Manchon A, Ducruet C, Lombard L, Auffret S, Rodmacq B, Dien B y, Pizzini S, Vogel J, Uhlir V, Hochstrasser M, Panaccione G 2008 J. Appl. Phys. 104 043914

    [15]

    Ding L, Teng J, Wang X C, Feng C, Jiang Y, Yu G H, Wang S G, Ward R C C 2010 Appl. Phys. Lett. 96 052515

    [16]

    Zhang S L, Teng J, Zhang J Y, Liu Y, Li J W, Yu G H, Wang S G 2010 Appl. Phys. Lett. 97 222504

    [17]

    Yang E, Vincent M S, Matthew T M, David M B, Zhu J G 2013 J. Appl. Phys. 113 17C116

    [18]

    McGuire T R, Gambino R J, Handley R C O, The Hall Effect, Its Applications (Vol. 1) (New York: Plenum Publishing Corp.), 137, 1980

    [19]

    Carvello B, Ducruet C, Rodmacq B, Auffret S, Gautier E, Gaudin G, Dieny B 2009 Appl. Phys. Lett. 92 102508

    [20]

    Ju H L, Li B H, Wu Z F, Zhang F, Liu S, Yu G H 2015 Acta Phys. Sin. 64 097501(in Chinese) [俱海浪, 李宝河, 吴志芳, 张璠, 刘帅, 于广华 2015 物理学报 64 097501]

    [21]

    Young W O, Lee K D, Jeong J R, Park B G 2014 J. Appl. Phys. 115 17C724

  • [1] 刘骏杭, 朱照照, 毕林竹, 王鹏举, 蔡建旺. 重金属缓冲层和覆盖层对TbFeCo超薄膜磁性及热稳定性的影响. 物理学报, 2023, 72(7): 077501. doi: 10.7498/aps.72.20222239
    [2] 扈仕林, 刘均华, 邓志雄, 肖文, 杨瞻, 陈凯, 廖昭亮. Pt/La0.67Sr0.33MnO3异质结中的反常霍尔效应. 物理学报, 2023, 72(9): 097503. doi: 10.7498/aps.72.20221852
    [3] 祝鑫强, 王剑, 朱璨, 罗丰, 陈树权, 徐佳辉, 徐峰, 王嘉赋, 张艳, 孙志刚. Co3Sn2S2单晶的磁性和电-热输运性能. 物理学报, 2023, 72(17): 177102. doi: 10.7498/aps.72.20230621
    [4] 刘晓伟, 熊俊林, 王利铮, 梁世军, 程斌, 缪峰. 单晶Ta3FeS6薄膜中巨大的矫顽场. 物理学报, 2022, 71(12): 127503. doi: 10.7498/aps.71.20220699
    [5] 杨萌, 白鹤, 李刚, 朱照照, 竺云, 苏鉴, 蔡建旺. 垂直各向异性Ho3Fe5O12薄膜的外延生长与其异质结构的自旋输运. 物理学报, 2021, 70(7): 077501. doi: 10.7498/aps.70.20201737
    [6] 俱海浪, 王洪信, 程鹏, 李宝河, 陈晓白, 刘帅, 于广华. 磁性多层膜CoFeB/Ni的垂直磁各向异性研究. 物理学报, 2016, 65(24): 247502. doi: 10.7498/aps.65.247502
    [7] 于涛, 刘毅, 朱正勇, 钟汇才, 朱开贵, 苟成玲. Mo覆盖层对MgO/CoFeB/Mo结构磁各向异性的影响. 物理学报, 2015, 64(24): 247504. doi: 10.7498/aps.64.247504
    [8] 俱海浪, 李宝河, 吴志芳, 张璠, 刘帅, 于广华. Co/Ni多层膜垂直磁各向异性的研究. 物理学报, 2015, 64(9): 097501. doi: 10.7498/aps.64.097501
    [9] 王日兴, 肖运昌, 赵婧莉. 垂直磁各向异性自旋阀结构中的铁磁共振. 物理学报, 2014, 63(21): 217601. doi: 10.7498/aps.63.217601
    [10] 郑勇林, 王晓茜, 葛泽玲, 郭红力, 严刚峰, 戴松晖, 朱晓玲, 田晓滨. 铁磁非铁磁夹层中电子自旋波的传输及应用. 物理学报, 2013, 62(22): 227701. doi: 10.7498/aps.62.227701
    [11] 陈希, 刘厚方, 韩秀峰, 姬扬. CoFeB/AlOx/Ta及AlOx/CoFeB/Ta结构中垂直易磁化效应的研究. 物理学报, 2013, 62(13): 137501. doi: 10.7498/aps.62.137501
    [12] 竺云, 韩娜. 引入纳米氧化层的CoFe/Pd双层膜结构中增强的垂直磁各向异性研究. 物理学报, 2012, 61(16): 167505. doi: 10.7498/aps.61.167505
    [13] 王一军, 刘洋, 于广华. Pt插层对铁磁/反铁磁界面交换耦合的影响. 物理学报, 2012, 61(16): 167503. doi: 10.7498/aps.61.167503
    [14] 刘娜, 王海, 朱涛. CoFeB/Pt多层膜的垂直磁各向异性研究. 物理学报, 2012, 61(16): 167504. doi: 10.7498/aps.61.167504
    [15] 冯春, 詹倩, 李宝河, 滕蛟, 李明华, 姜勇, 于广华. 利用FePt/Au多层膜结构制备垂直磁记录L10-FePt薄膜. 物理学报, 2009, 58(5): 3503-3508. doi: 10.7498/aps.58.3503
    [16] 付艳强, 刘洋, 金川, 于广华. Pt插层对Co/FeMn界面的影响. 物理学报, 2009, 58(11): 7977-7982. doi: 10.7498/aps.58.7977
    [17] 史慧刚, 付军丽, 薛德胜. 非晶Fe89.7P10.3合金纳米线阵列的磁性研究. 物理学报, 2005, 54(8): 3862-3866. doi: 10.7498/aps.54.3862
    [18] 黄 阀, 李宝河, 杨 涛, 翟中海, 朱逢吾. 多层膜[Co85Cr15/Pt]20的磁性、垂直磁记录特性和微结构的关系. 物理学报, 2005, 54(4): 1841-1846. doi: 10.7498/aps.54.1841
    [19] 林应斌, 赖 恒, 黄志高, 都有为. MnBi磁性多层膜磁光科尔效应的数值模拟. 物理学报, 2004, 53(2): 606-613. doi: 10.7498/aps.53.606
    [20] 冯 倩, 黄志高, 都有为. 磁性多层膜磁特性的表面效应. 物理学报, 2003, 52(11): 2906-2911. doi: 10.7498/aps.52.2906
计量
  • 文章访问数:  5064
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-31
  • 修回日期:  2015-06-05
  • 刊出日期:  2015-10-05

/

返回文章
返回