搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数值原子轨道基组的第一性原理计算软件ABACUS

刘晓辉 陈默涵 李鹏飞 沈瑜 任新国 郭光灿 何力新

引用本文:
Citation:

基于数值原子轨道基组的第一性原理计算软件ABACUS

刘晓辉, 陈默涵, 李鹏飞, 沈瑜, 任新国, 郭光灿, 何力新

Introduction to first-principles simulation package ABACUS based on systematically improvable atomic orbitals

Liu Xiao-Hui, Chen Mo-Han, Li Peng-Fei, Shen Yu, Ren Xin-Guo, Guo Guang-Can, He Li-Xin
PDF
导出引用
  • 随着超级计算机硬件和数值算法迅速发展, 使得目前利用密度泛函理论研究上千个原子体系的电子能带和结构等性质变得可行. 数值原子轨道基组由于其基组较小和局域等特性, 可以很好地与电子结构计算中的线性标度算法等的新算法结合, 用来研究较大尺寸的物理体系. 本文详细介绍了一款中国科学技术大学量子信息重点 实验室自主开发的基于数值原子轨道基组的第一性原理计算软件 Atomic-orbital Based Ab-initio Computation at UStc. 大量的测试结果表明: 该软件具有很好的准确性和较高的并行效率, 可以用于包含1000个原子左右的系统的电子结构和原子结构的研究以及分子动力学模拟计算.
    With the rapid development of supercomputers and the advances of numerical algorithms, nowadays it is possible to study the electronic, structural and dynamical properties of complicated physical systems containing thousands of atoms using density functional theory (DFT). The numerical atomic orbitals are ideal basis sets for large-scale DFT calculations in terms of their small base size and localized characteristic, and can be mostly easily combined with linear scaling methods. Here we introduce a first-principles simulation package “Atomic-orbital Based Ab-initio Computation at UStc (ABACUS)”, developed at the Key Laboratory of Quantum Information, University of Science and Technology of China. This package provides a useful tool to study the electronic, structural and molecular dynamic properties of systems containing up to 1000 atoms. In this paper, we introduce briefly the main algorithms used in the package, including construction of the atomic orbital bases, construction of the Kohn-Sham Hamiltonian in the atomic basis sets, and some details of solving Kohn-Sham equations, including charge mixing, charge extrapolation, smearing etc. We then give some examples calculated using ABACUS: 1) the energy orders of B20 clusters; 2) the structure of bulk Ti with vacancies; 3) the density of states of a model protein; 4) the structure of a piece of DNA containing 12 base pairs, 788 atoms. All results show that the results obtained by ABACUS are in good agreement with either experimental results or results calculated using plane wave basis.
      通信作者: 任新国, renxg@ustc.edu.cn;helx@ustc.edu.cn ; 何力新, renxg@ustc.edu.cn;helx@ustc.edu.cn
    • 基金项目: 科技部重大研究计划(批准号: 2011CB921200)、国家自然科学基金(批准号:11374275, 11374276)和 中国科学院战略性先导科技专项(B类) (批准号:XDB01030100).
      Corresponding author: Ren Xin-Guo, renxg@ustc.edu.cn;helx@ustc.edu.cn ; He Li-Xin, renxg@ustc.edu.cn;helx@ustc.edu.cn
    • Funds: Project supported by the Chinese National Fundamental Research Program (Grant No. 2011CB921200), the National Natural Science Foundation of China (Grant Nos. 11374275, 11374276), and “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences (Grant No. XDB01030100).
    [1]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [2]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [3]

    Goedecker S 1999 Rev. Mod. Phys. 71 1085

    [4]

    Lin L, Lu J F, Car R E W 2009 Phys. Rev. B 79 115133

    [5]

    Lin L, Chen M H, Yang C, He L X 2013 J. Phys.: Condens. Matter 25 295501

    [6]

    Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745

    [7]

    Ozaki T 2003 Phys. Rev. B 67 155108

    [8]

    Blum V, Gehrke R, Hanke F, Havu P, Havu V, Ren X G, Reuter K, Scheffler M 2009 Comput. Phys. Commun. 180 2175

    [9]

    Chen M H, Guo G C, He L X 2010 J. Phys.: Condens. Matter 22 445501

    [10]

    Chen M H, Guo G C, He L X 2011 J. Phys.: Condens. Matter 23 325501

    [11]

    Hamann D R, Schlter M, Chiang C 1979 Phys. Rev. Lett. 43 1494

    [12]

    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, Fabris S, Fratesi G, de Gironcoli S, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P, Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502

    [13]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [14]

    Grimme S 2006 J. Comput. Chem. 27 1787

    [15]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207

    [16]

    Kleinman L, Bylander D M 1982 Phys. Rev. Lett. 48 1425

    [17]

    Portal D S, Artacho E, Soler J M 1995 Solid State Communications 95 685

    [18]

    Li P F, Liu X H, Chen M H, Lin P Z, Ren X G, Lin L, He L doi:10.1016/j.commatsci.2015.07.004

    [19]

    Frigo M, Johnson S G 2005 Proc. IEEE 93 216

    [20]

    Pulay P 1980 Chem. Phys. Lett. 73 393

    [21]

    Kerker G P 1981 Phys. Rev. B 23 3082

    [22]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [23]

    Alfè D 1999 Comput. Phys. Commun. 118 31

    [24]

    Methfessel M, Paxton A T 1989 Phys. Rev. B 40 3616

    [25]

    (Cleveland: CRC Press) pp411-422

    [26]

    Wang J Y, Zhu S G, Xu C F 2002 Biology Chemistry (Beijing: Higher Education Press) p489

    [27]

    Chattopadhyay B, Mukherjee M 2011 J. Phys. Chem. B 115 1760

  • [1]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [2]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [3]

    Goedecker S 1999 Rev. Mod. Phys. 71 1085

    [4]

    Lin L, Lu J F, Car R E W 2009 Phys. Rev. B 79 115133

    [5]

    Lin L, Chen M H, Yang C, He L X 2013 J. Phys.: Condens. Matter 25 295501

    [6]

    Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745

    [7]

    Ozaki T 2003 Phys. Rev. B 67 155108

    [8]

    Blum V, Gehrke R, Hanke F, Havu P, Havu V, Ren X G, Reuter K, Scheffler M 2009 Comput. Phys. Commun. 180 2175

    [9]

    Chen M H, Guo G C, He L X 2010 J. Phys.: Condens. Matter 22 445501

    [10]

    Chen M H, Guo G C, He L X 2011 J. Phys.: Condens. Matter 23 325501

    [11]

    Hamann D R, Schlter M, Chiang C 1979 Phys. Rev. Lett. 43 1494

    [12]

    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, Fabris S, Fratesi G, de Gironcoli S, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P, Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502

    [13]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [14]

    Grimme S 2006 J. Comput. Chem. 27 1787

    [15]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207

    [16]

    Kleinman L, Bylander D M 1982 Phys. Rev. Lett. 48 1425

    [17]

    Portal D S, Artacho E, Soler J M 1995 Solid State Communications 95 685

    [18]

    Li P F, Liu X H, Chen M H, Lin P Z, Ren X G, Lin L, He L doi:10.1016/j.commatsci.2015.07.004

    [19]

    Frigo M, Johnson S G 2005 Proc. IEEE 93 216

    [20]

    Pulay P 1980 Chem. Phys. Lett. 73 393

    [21]

    Kerker G P 1981 Phys. Rev. B 23 3082

    [22]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [23]

    Alfè D 1999 Comput. Phys. Commun. 118 31

    [24]

    Methfessel M, Paxton A T 1989 Phys. Rev. B 40 3616

    [25]

    (Cleveland: CRC Press) pp411-422

    [26]

    Wang J Y, Zhu S G, Xu C F 2002 Biology Chemistry (Beijing: Higher Education Press) p489

    [27]

    Chattopadhyay B, Mukherjee M 2011 J. Phys. Chem. B 115 1760

  • [1] 侯璐, 童鑫, 欧阳钢. 一维carbyne链原子键性质应变调控的第一性原理研究. 物理学报, 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [2] 王小卡, 汤富领, 薛红涛, 司凤娟, 祁荣斐, 刘静波. H,Cl和F原子钝化Cu2ZnSnS4(112)表面态的第一性原理计算. 物理学报, 2018, 67(16): 166401. doi: 10.7498/aps.67.20180626
    [3] 黄鳌, 卢志鹏, 周梦, 周晓云, 陶应奇, 孙鹏, 张俊涛, 张廷波. Al和O间隙原子对-Al2O3热力学性质影响的第一性原理计算. 物理学报, 2017, 66(1): 016103. doi: 10.7498/aps.66.016103
    [4] 杨彪, 王丽阁, 易勇, 王恩泽, 彭丽霞. C, N, O原子在金属V中扩散行为的第一性原理计算. 物理学报, 2015, 64(2): 026602. doi: 10.7498/aps.64.026602
    [5] 曾小波, 朱晓玲, 李德华, 陈中钧, 艾应伟. IrB和IrB2力学性质的第一性原理计算. 物理学报, 2014, 63(15): 153101. doi: 10.7498/aps.63.153101
    [6] 何静芳, 郑树凯, 周鹏力, 史茹倩, 闫小兵. Cu-Co共掺杂ZnO光电性质的第一性原理计算. 物理学报, 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [7] 卢志鹏, 祝文军, 卢铁城. 高压下Fe从bcc到hcp结构相变机理的第一性原理计算. 物理学报, 2013, 62(5): 056401. doi: 10.7498/aps.62.056401
    [8] 李宇波, 王骁, 戴庭舸, 袁广中, 杨杭生. 第一性原理计算研究立方氮化硼空位的电学和光学特性. 物理学报, 2013, 62(7): 074201. doi: 10.7498/aps.62.074201
    [9] 张品亮, 龚自正, 姬广富, 刘崧. α-Ti2Zr高压物性的第一性原理计算研究. 物理学报, 2013, 62(4): 046202. doi: 10.7498/aps.62.046202
    [10] 张季, 王迪, 张德明, 张庆礼, 万松明, 孙敦陆, 殷绍唐. BaBPO5晶体晶格振动光谱研究与第一性原理计算. 物理学报, 2013, 62(3): 037802. doi: 10.7498/aps.62.037802
    [11] 令狐佳珺, 梁工英. In掺杂ZnTe发光性能的第一性原理计算. 物理学报, 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [12] 范开敏, 杨莉, 彭述明, 龙兴贵, 吴仲成, 祖小涛. 第一性原理计算α-ScDx(D=H,He)的弹性常数. 物理学报, 2011, 60(7): 076201. doi: 10.7498/aps.60.076201
    [13] 张易军, 闫金良, 赵刚, 谢万峰. Si掺杂β-Ga2O3的第一性原理计算与实验研究. 物理学报, 2011, 60(3): 037103. doi: 10.7498/aps.60.037103
    [14] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析. 物理学报, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [15] 胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟. Finemet合金析出相-Fe(Si)结构与磁性的第一性原理计算. 物理学报, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [16] 黄云霞, 曹全喜, 李智敏, 李桂芳, 王毓鹏, 卫云鸽. Al掺杂ZnO粉体的第一性原理计算及微波介电性质. 物理学报, 2009, 58(11): 8002-8007. doi: 10.7498/aps.58.8002
    [17] 尚家香, 于潭波. NiAl和Cr材料中H原子间隙的第一性原理计算. 物理学报, 2009, 58(2): 1179-1184. doi: 10.7498/aps.58.1179
    [18] 陈 琨, 范广涵, 章 勇, 丁少锋. In-N共掺杂ZnO第一性原理计算. 物理学报, 2008, 57(5): 3138-3147. doi: 10.7498/aps.57.3138
    [19] 陈 琨, 范广涵, 章 勇. Mn掺杂ZnO光学特性的第一性原理计算. 物理学报, 2008, 57(2): 1054-1060. doi: 10.7498/aps.57.1054
    [20] 马新国, 唐超群, 黄金球, 胡连峰, 薛 霞, 周文斌. 锐钛矿型TiO2(101)面原子几何及弛豫结构的第一性原理计算. 物理学报, 2006, 55(8): 4208-4213. doi: 10.7498/aps.55.4208
计量
  • 文章访问数:  8118
  • PDF下载量:  720
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-02
  • 修回日期:  2015-09-03
  • 刊出日期:  2015-09-05

/

返回文章
返回