搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti/HfO2/Pt阻变存储单元中的氧空位聚簇分布

蒋然 杜翔浩 韩祖银 孙维登

引用本文:
Citation:

Ti/HfO2/Pt阻变存储单元中的氧空位聚簇分布

蒋然, 杜翔浩, 韩祖银, 孙维登

Cluster distribution for oxygen vacancy in Ti/HfO2/Pt resistive switching memory device

Jiang Ran, Du Xiang-Hao, Han Zu-Yin, Sun Wei-Deng
PDF
导出引用
  • 为了研究阻变存储器导电细丝的形成位置和分布规律, 使用X射线光电子能谱研究了Ti/HfO2/Pt阻变存储器件单元中Hf 4f的空间分布, 得到了阻变层的微结构信息. 通过I-V测试, 得到该器件单元具有典型的阻变特性; 通过针对Hf 4f的不同深度测试, 发现处于低阻态时, 随着深度的增加, Hf4+化学组分单调地减小; 而处于高阻态和未施加电压前, 该组分呈现波动分布; 通过Hf4+在高阻态和低阻态下组分含量以及电子能损失谱分析, 得到高阻态下Hf4+组分的平均含量要高于低阻态; 另外, 高阻态和低阻态下的O 1s谱随深度的演变也验证了Hf4+的变化规律. 根据实验结果, 提出了局域分布的氧空位聚簇可能是造成这一现象的原因. 空位簇间的链接和断裂决定了导电细丝的形成和消失. 由于导电细丝容易在氧空位缺陷聚簇的地方首先形成, 这一研究为导电细丝的发生位置提供了参考.
    The origin of the resistance switching behavior in HfO2 is explained in terms of filament formation/rupture under an applied voltage. In order to investigate the position and process of conductive filament in resistive switching memory, the resistive switching and chemical structure of Ti/HfO2/Pt memory device are studied. Through current-voltage measurement, typical resistive switching behavior is observed in Ti/HfO2/Pt device cells; through detecting Hf 4f with different depths by using X-ray photoelectron spectroscopy. It is observed that the Hf4+ decreases monotonically with depth increasing towards HfO2/Pt interface in low resistance state, while a fluctuation distribution of Hf4+ is shown in high resistance state and in the pristine Ti/HfO2/Pt device. The concentration of Hf4+ in high resistance state is higher than that in low resistance state, which is confirmed by measuring the electron energy loss spectrum. Additionally, the O 1s spectrum shows a similar result consistent with the Hf 4f one. The above result is explained by the existence of locally accumulated oxygen vacancies in the oxide bulk layer in high resistance state and pristine states. It is proposed that the oxygen vacancy clusters dominantly determine the resistivity by the connecting/rupture between the neighbor cluster sites in the bulk. The cluster defects are the preexisting structural distortion/injure by charge trapping defects due to the fixed charge which could confine the nucleation of oxygen vacancies and bigger distortion could be enhanced or recovered via the transportation of oxygen vacancies under the external voltage. Oxygen vacancies are driven away from the clusters under SET electrical stimulus, and then recover back to original cluster sites under RESET process.#br#The previous presumption of the ideal evenly-distributed state for oxygen vacancies in the bulk of resistance random access memories (RRAMs) device leads to an issue about where the filaments occur/form first since the oxygen vacancy defects show uniform distribution in the active oxide bulk layer. Since the conductive filament is easily formed in the cluster region of oxygen vacancies, this study could provide a deep understanding of the formation of conductive filament in RRAMs device.
    • 基金项目: 国家自然科学基金(批准号: 11374182)、山东省自然科学基金(批准号: ZR2012FQ012)和济南市高校院所自主创新项目(批准号: 201303019)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11374182), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012FQ012), and the Jinan Independent Innovation Projects of Universities, China (Grant No. 201303019).
    [1]

    Sawa A 2008 Mater. Today 11 28

    [2]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632

    [3]

    Liu D Q, Cheng H F, Zhu X, Wang N N, Zhang C Y 2014 Acta Phys. Sin. 63 187301 (in Chinese) [刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳 2014 物理学报 63 187301]

    [4]

    Shang D S, Sun J R, Shen B G 2013 Chin. Phys. B 22 067202

    [5]

    Zhang T, Bai Y, Jia C H, Zhang W F 2012 Chin. Phys. B 21 107304

    [6]

    Zhang T, Yin J, Zhao G F, Zhang W F, Xia Y D, Liu Z G 2014 Chin. Phys. B 23 087304

    [7]

    Jiang R, Wu Z, Du X, Han Z, Sun W 2015 Appl. Phys. Lett. 107 013502

    [8]

    Dong Z K, Duan S K, Hu X F, Wang L D 2014 Acta Phys. Sin. 63 128502 (in Chinese) [董哲康, 段书凯, 胡小方, 王丽丹 2014 物理学报 63 128502]

    [9]

    Li Y T, Long S B, L H B, Liu Q, Wang Q, Wang Y, Zhang S, Lian W T, Liu S, Liu M 2011 Chin. Phys. B 20 017305

    [10]

    Jiang R, Li Z 2008 Appl. Phys. Lett. 92 012919

    [11]

    Chen R, Zhou L W, Wang J Y, Chen C J, Shao X L, Jiang H, Zhang K L, L L R, Zhao J S 2014 Acta Phys. Sin. 63 067202 (in Chinese) [陈然, 周立伟, 王建云, 陈长军, 邵兴隆, 蒋浩, 张楷亮, 吕联荣, 赵金石 2014 物理学报 63 067202]

    [12]

    Chen Y N, Xu Z, Zhao S L, Yin F F, Zhang C W, Jiao B Y, Dong Y H 2011 Chin. Phys. B 20 127303

    [13]

    Jiang R, Xie E, Wang Z 2007 J. Mater. Sci. 42 7343

    [14]

    Miao F, Strachan J P, Yang J J, Zhang M X, Goldfarb I, Torrezan A C, Eschbach P, Kelley R D, Medeiros-Ribeiro G, Williams R S 2011 Adv. Mater. 47 5633

    [15]

    Kim S, Lee D, Park J, Jung S, Lee W, Shin J, Woo J, Choi G, Hwang C 2012 Nanotechnology 32 325702

    [16]

    Jiang R, Xie E, Chen Z, Zhang Z 2006 Appl. Surf. Sci. 253 2421

    [17]

    Liu Q, Sun J, Lv H B, Long S, Yin K B, Wan N, Li Y T, Sun L, Liu M 2012 Adv. Mater. 24 1844

    [18]

    Lin Y S, Zeng F, Tang S G, Liu H Y, Chen C, Gao S, Wang Y G, Pan F 2013 J. Appl. Phys. 113 064510

    [19]

    Jiang R, Xie E, Wang Z 2006 Appl. Phys. Lett. 89 142907

    [20]

    Morant C, Galan L, Sanz J M 1990 Surf. Interface Anal. 112 304

    [21]

    Muller D A, Nakagawa N, Ohtomo A, Grazul J L, Hwang H Y 2004 Nature 430 657

    [22]

    Leisegang T, Stocker H, Levin A, Weibach T, Zschornak M, Gutmann E, Rickers K, Gemming S, Meyer D 2009 Phys. Rev. Lett. 102 087601

    [23]

    Jiang W, Noman M, Lu Y M, Bain J A, Salvador P A, Skowronski M 2011 J. Appl. Phys. 110 034509

    [24]

    Park C, Seo Y, Jung J, Kim D W 2008 J. Appl. Phys. 103 054106

    [25]

    Chen Y S, Chen B, Gao B, Chen L P, Lian G L, Liu L F, Wang Y, Liu X Y, Kang J F 2011 Appl. Phys. Lett. 99 072113

  • [1]

    Sawa A 2008 Mater. Today 11 28

    [2]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632

    [3]

    Liu D Q, Cheng H F, Zhu X, Wang N N, Zhang C Y 2014 Acta Phys. Sin. 63 187301 (in Chinese) [刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳 2014 物理学报 63 187301]

    [4]

    Shang D S, Sun J R, Shen B G 2013 Chin. Phys. B 22 067202

    [5]

    Zhang T, Bai Y, Jia C H, Zhang W F 2012 Chin. Phys. B 21 107304

    [6]

    Zhang T, Yin J, Zhao G F, Zhang W F, Xia Y D, Liu Z G 2014 Chin. Phys. B 23 087304

    [7]

    Jiang R, Wu Z, Du X, Han Z, Sun W 2015 Appl. Phys. Lett. 107 013502

    [8]

    Dong Z K, Duan S K, Hu X F, Wang L D 2014 Acta Phys. Sin. 63 128502 (in Chinese) [董哲康, 段书凯, 胡小方, 王丽丹 2014 物理学报 63 128502]

    [9]

    Li Y T, Long S B, L H B, Liu Q, Wang Q, Wang Y, Zhang S, Lian W T, Liu S, Liu M 2011 Chin. Phys. B 20 017305

    [10]

    Jiang R, Li Z 2008 Appl. Phys. Lett. 92 012919

    [11]

    Chen R, Zhou L W, Wang J Y, Chen C J, Shao X L, Jiang H, Zhang K L, L L R, Zhao J S 2014 Acta Phys. Sin. 63 067202 (in Chinese) [陈然, 周立伟, 王建云, 陈长军, 邵兴隆, 蒋浩, 张楷亮, 吕联荣, 赵金石 2014 物理学报 63 067202]

    [12]

    Chen Y N, Xu Z, Zhao S L, Yin F F, Zhang C W, Jiao B Y, Dong Y H 2011 Chin. Phys. B 20 127303

    [13]

    Jiang R, Xie E, Wang Z 2007 J. Mater. Sci. 42 7343

    [14]

    Miao F, Strachan J P, Yang J J, Zhang M X, Goldfarb I, Torrezan A C, Eschbach P, Kelley R D, Medeiros-Ribeiro G, Williams R S 2011 Adv. Mater. 47 5633

    [15]

    Kim S, Lee D, Park J, Jung S, Lee W, Shin J, Woo J, Choi G, Hwang C 2012 Nanotechnology 32 325702

    [16]

    Jiang R, Xie E, Chen Z, Zhang Z 2006 Appl. Surf. Sci. 253 2421

    [17]

    Liu Q, Sun J, Lv H B, Long S, Yin K B, Wan N, Li Y T, Sun L, Liu M 2012 Adv. Mater. 24 1844

    [18]

    Lin Y S, Zeng F, Tang S G, Liu H Y, Chen C, Gao S, Wang Y G, Pan F 2013 J. Appl. Phys. 113 064510

    [19]

    Jiang R, Xie E, Wang Z 2006 Appl. Phys. Lett. 89 142907

    [20]

    Morant C, Galan L, Sanz J M 1990 Surf. Interface Anal. 112 304

    [21]

    Muller D A, Nakagawa N, Ohtomo A, Grazul J L, Hwang H Y 2004 Nature 430 657

    [22]

    Leisegang T, Stocker H, Levin A, Weibach T, Zschornak M, Gutmann E, Rickers K, Gemming S, Meyer D 2009 Phys. Rev. Lett. 102 087601

    [23]

    Jiang W, Noman M, Lu Y M, Bain J A, Salvador P A, Skowronski M 2011 J. Appl. Phys. 110 034509

    [24]

    Park C, Seo Y, Jung J, Kim D W 2008 J. Appl. Phys. 103 054106

    [25]

    Chen Y S, Chen B, Gao B, Chen L P, Lian G L, Liu L F, Wang Y, Liu X Y, Kang J F 2011 Appl. Phys. Lett. 99 072113

  • [1] 柯庆, 代月花. 电化学金属化阻性存储器导电细丝生长中的离子动力学研究. 物理学报, 2023, 72(24): 248501. doi: 10.7498/aps.72.20231232
    [2] 王英, 黄慧香, 黄香林, 郭婷婷. 光电协同调控下HfOx基阻变存储器的阻变特性. 物理学报, 2023, 72(19): 197201. doi: 10.7498/aps.72.20230797
    [3] 史晓红, 陈京金, 曹昕睿, 吴顺情, 朱梓忠. 富锂锰基三元材料Li1.167Ni0.167Co0.167Mn0.5O2中的氧空位形成. 物理学报, 2022, 71(17): 178202. doi: 10.7498/aps.71.20220274
    [4] 朱茂聪, 邵雅洁, 周静, 陈文, 王志青, 田晶. 铌掺杂锆钛酸铅铁电薄膜调控CuInS2量子点的阻变性能. 物理学报, 2022, 71(20): 207301. doi: 10.7498/aps.71.20220911
    [5] 龚少康, 周静, 王志青, 朱茂聪, 沈杰, 吴智, 陈文. 尺寸调控SnO2量子点的阻变性能及调控机理. 物理学报, 2021, 70(19): 197301. doi: 10.7498/aps.70.20210608
    [6] 余志强, 刘敏丽, 郎建勋, 钱楷, 张昌华. 基于Au/TiO2/FTO结构忆阻器的开关特性与机理研究. 物理学报, 2018, 67(15): 157302. doi: 10.7498/aps.67.20180425
    [7] 栗苹, 许玉堂. 氧空位迁移造成的氧化物介质层时变击穿的蒙特卡罗模拟. 物理学报, 2017, 66(21): 217701. doi: 10.7498/aps.66.217701
    [8] 代月花, 潘志勇, 陈真, 王菲菲, 李宁, 金波, 李晓风. 基于HfO2的阻变存储器中Ag导电细丝方向和浓度的第一性原理研究. 物理学报, 2016, 65(7): 073101. doi: 10.7498/aps.65.073101
    [9] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响. 物理学报, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [10] 蒋先伟, 鲁世斌, 代广珍, 汪家余, 金波, 陈军宁. 电荷俘获存储器数据保持特性第一性原理研究. 物理学报, 2015, 64(21): 213102. doi: 10.7498/aps.64.213102
    [11] 陈然, 周立伟, 王建云, 陈长军, 邵兴隆, 蒋浩, 张楷亮, 吕联荣, 赵金石. 基于Cu/SiOx/Al结构的阻变存储器多值特性及机理的研究. 物理学报, 2014, 63(6): 067202. doi: 10.7498/aps.63.067202
    [12] 庞华, 邓宁. Ni/HfO2/Pt阻变单元特性与机理的研究. 物理学报, 2014, 63(14): 147301. doi: 10.7498/aps.63.147301
    [13] 汪家余, 代月花, 赵远洋, 徐建彬, 杨菲, 代广珍, 杨金. 电荷俘获存储器的过擦现象. 物理学报, 2014, 63(20): 203101. doi: 10.7498/aps.63.203101
    [14] 代广珍, 代月花, 徐太龙, 汪家余, 赵远洋, 陈军宁, 刘琦. HfO2中影响电荷俘获型存储器的氧空位特性第一性原理研究. 物理学报, 2014, 63(12): 123101. doi: 10.7498/aps.63.123101
    [15] 杨金, 周茂秀, 徐太龙, 代月花, 汪家余, 罗京, 许会芳, 蒋先伟, 陈军宁. 阻变存储器复合材料界面及电极性质研究. 物理学报, 2013, 62(24): 248501. doi: 10.7498/aps.62.248501
    [16] 韦晓莹, 胡明, 张楷亮, 王芳, 刘凯. 氧化钒薄膜的微结构及阻变特性研究. 物理学报, 2013, 62(4): 047201. doi: 10.7498/aps.62.047201
    [17] 马丽莎, 张前程, 程琳. Zn吸附到含有氧空位(VO)以及羟基(-OH)的锐钛矿相TiO2(101)表面电子结构的第一性原理计算. 物理学报, 2013, 62(18): 187101. doi: 10.7498/aps.62.187101
    [18] 龚宇, 陈柏桦, 熊亮萍, 古梅, 熊洁, 高小铃, 罗阳明, 胡胜, 王育华. 氧空位对Eu2+, Dy3+掺杂的Ca5MgSi3O12发光及余辉性能的影响. 物理学报, 2013, 62(15): 153201. doi: 10.7498/aps.62.153201
    [19] 孙运斌, 张向群, 李国科, 杨海涛, 成昭华. 氧空位对Co掺杂TiO2稀磁半导体中杂质分布和磁交换的影响. 物理学报, 2012, 61(2): 027503. doi: 10.7498/aps.61.027503
    [20] 阎志军, 王印月, 徐 闰, 蒋最敏. 电子束蒸发制备HfO2高k薄膜的结构特性. 物理学报, 2004, 53(8): 2771-2774. doi: 10.7498/aps.53.2771
计量
  • 文章访问数:  4855
  • PDF下载量:  259
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-03
  • 修回日期:  2015-06-24
  • 刊出日期:  2015-10-05

/

返回文章
返回