搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于教室人群疏散实验的行人流建模和模拟

董力耘 陈立 段晓茵

引用本文:
Citation:

基于教室人群疏散实验的行人流建模和模拟

董力耘, 陈立, 段晓茵

Modeling and simulation of pedestrian evacuation from a single-exit classroom based on experimental features

Dong Li-Yun, Chen Li, Duan Xiao-Yin
PDF
导出引用
  • 基于教室人群疏散实验, 从中归纳出疏散过程中行人的基本运动特征. 将桌椅分别视为不可穿越和可穿越的静态障碍物, 而行人则被当成可移动的障碍物, 这将导致背景场随人群的运动而动态更新, 因此可以更好地反映前方拥挤程度对后面人群路径选择行为的影响. 采用基于动态背景场的元胞自动机模型研究了不同桌椅排列和出口宽度的教室人群疏散过程, 给出了疏散时间的空间分布以及平均和最大疏散时间, 再现了实验中人群疏散的基本特征. 数值模拟结果表明, 疏散时间取决于桌椅的排列方式和教室出口的宽度. 对于同一种排列, 出口越小则疏散时间越长; 对于给定的出口宽度, 通常随着过道数的增加, 疏散时间随之减少; 当过道数增加且过道宽度不足以两人并行, 从两侧进入过道的行人会发生冲突, 使疏散效率有所降低; 靠近出口一侧墙壁设置过道有利于人群的疏散. 文中进一步分析了模拟与实验结果存在差异的原因.
    It is of fundamental importance to investigate the evacuation process from a room with obstacles. The typical case is the evacuation of students from a classroom. Based on evacuation experiments from a classroom, the essential features of evacuee are concluded. In the original floor field model, the dynamic floor field is introduced in order to reflect the interaction among pedestrians. A pedestrian may follow the virtual trace of another one in front. The static floor field does not consider the influence of pedestrians. In this paper, the original dynamic floor field is ignored. These desks and chairs are treated as impassable and passable static obstacles, respectively. The static and passible obstacles, such as chairs, lead to the delay of movement of pedestrians. Furthermore, pedestrians are regarded as movable obstacles. The effect of static obstacles on floor field does not change with time. However, the effect of movable obstacles on floor field is dynamic. Therefore, the whole floor field is updated dynamically according to the movement of crowd. Pedestrians may try to find another uncongested path or exit when they find the crowd in front. It provides a better description of the influence of downstream congestions on upstream crowd. The cellular automaton model based on the dynamic floor field is used to investigate the evacuation process in the case of four layouts and three exit widths. The spatial distributions of evacuation time in different conditions and also the average and maximum evacuation times are obtained. Numerical simulations reproduce the evacuation process observed in the experiment quite well. The evacuation time depends on arrangement of these desks and the exit width. For a given layout, the smaller exit leads to longer evacuation time. It is found that the evacuation time does not decrease monotonically with increasing the number of aisles, which depends on the width of aisle as well. When the aisle is not wide enough, the conflict of pedestrians from both sides reduces the efficiency of evacuation. It is helpful for coping with crowd evacuation with an aisle close to the exit side of the wall. The reasons of the differences between experimental and simulation results are also discussed in more detail.
      通信作者: 董力耘, dly@shu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2012CB725404)和国家自然科学基金(批准号: 11172164)资助的课题.
      Corresponding author: Dong Li-Yun, dly@shu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB725404) and the National Natural Science Foundation of China (Grant No. 11172164).
    [1]

    Helbing D, Farkas I, Vicsek T 2000 Nature 407 487

    [2]

    Helbing D, Buzna L, Johansson A, Werner T 2005 Transport. Sci. 39 1

    [3]

    Helbing D, Isobe M, Nagatani T, Takimoto K 2003 Phys. Rev. E 67 067101

    [4]

    Nagai R, Nagatani T, Isobe M, Adachi T 2004 Physica A 343 712

    [5]

    Isobe M, Helbing D, Nagatani T 2004 Phys. Rev. E 69 066132

    [6]

    Zhang J, Song W G, Xu X 2008 Physica A 387 5901

    [7]

    Liu S B, Yang L Z, Fang T Y, Li J 2009 Physica A 388 1921

    [8]

    Duan X Y, Dong L Y, Wang G Y, Wei Y F, Tian H H 2013 J. Shanghai Univ. 19 585 (in Chinese) [段晓茵, 董力耘, 王甘赟, 韦艳芳, 田欢欢 2013 上海大学学报(自然科学版) 19 585]

    [9]

    Helbing D, Molnr P 1995 Phys. Rev.E 51 4282

    [10]

    Yu W J, Chen R, Dong L Y, Dai S Q 2005 Phys. Rev. E 72 026112

    [11]

    Muramatsu M, Irie T, Nagatani T 1999 Physica A 267 487

    [12]

    Blue V J, Adler J L 2001 Transp. Res. B 35 293

    [13]

    Burstedde C, Klauck K, Schadschneider A, Zittartz J 2001 Physica A 295 507

    [14]

    Kirchner A, Schadschneider A 2002 Physica A 312 260

    [15]

    Song W G, Yu Y F, Fan W C, Zhang H P 2005 Sci. China Ser E$ 35 725 (in Chinese) [宋卫国, 于彦飞, 范维澄, 张和平 2005 中国科学: E辑 35 725]

    [16]

    Varas A, Cornejo M D, Mainemer D, Toledo B, Rogan J, Munoz V, Valdivia J A 2007 Physica A 382 631

    [17]

    Huang H J, Guo R Y 2008 Phys. Rev. E 78 021131

    [18]

    Guo R Y, Huang H J 2010 Chin. Phys. B 19 030501

    [19]

    Zhu K J, Yang L Z 2010 Acta Phys. Sin. 59 7701 (in Chinese) [朱孔金, 杨立中 2010 物理学报 59 7701]

    [20]

    Alizadeh R 2011 Safety Sci. 49 315

    [21]

    Guo R Y, Huang H J 2011 J. Stat. Mech. P04018

    [22]

    Chen L, Guo R Y, Ta N 2013 Acta Phys. Sin. 62 050506 (in Chinese) [陈亮, 郭仁拥, 塔娜 2013 物理学报 62 050506]

    [23]

    Tian H H, Dong L Y, Xue Y 2015 Physica A 420 164

  • [1]

    Helbing D, Farkas I, Vicsek T 2000 Nature 407 487

    [2]

    Helbing D, Buzna L, Johansson A, Werner T 2005 Transport. Sci. 39 1

    [3]

    Helbing D, Isobe M, Nagatani T, Takimoto K 2003 Phys. Rev. E 67 067101

    [4]

    Nagai R, Nagatani T, Isobe M, Adachi T 2004 Physica A 343 712

    [5]

    Isobe M, Helbing D, Nagatani T 2004 Phys. Rev. E 69 066132

    [6]

    Zhang J, Song W G, Xu X 2008 Physica A 387 5901

    [7]

    Liu S B, Yang L Z, Fang T Y, Li J 2009 Physica A 388 1921

    [8]

    Duan X Y, Dong L Y, Wang G Y, Wei Y F, Tian H H 2013 J. Shanghai Univ. 19 585 (in Chinese) [段晓茵, 董力耘, 王甘赟, 韦艳芳, 田欢欢 2013 上海大学学报(自然科学版) 19 585]

    [9]

    Helbing D, Molnr P 1995 Phys. Rev.E 51 4282

    [10]

    Yu W J, Chen R, Dong L Y, Dai S Q 2005 Phys. Rev. E 72 026112

    [11]

    Muramatsu M, Irie T, Nagatani T 1999 Physica A 267 487

    [12]

    Blue V J, Adler J L 2001 Transp. Res. B 35 293

    [13]

    Burstedde C, Klauck K, Schadschneider A, Zittartz J 2001 Physica A 295 507

    [14]

    Kirchner A, Schadschneider A 2002 Physica A 312 260

    [15]

    Song W G, Yu Y F, Fan W C, Zhang H P 2005 Sci. China Ser E$ 35 725 (in Chinese) [宋卫国, 于彦飞, 范维澄, 张和平 2005 中国科学: E辑 35 725]

    [16]

    Varas A, Cornejo M D, Mainemer D, Toledo B, Rogan J, Munoz V, Valdivia J A 2007 Physica A 382 631

    [17]

    Huang H J, Guo R Y 2008 Phys. Rev. E 78 021131

    [18]

    Guo R Y, Huang H J 2010 Chin. Phys. B 19 030501

    [19]

    Zhu K J, Yang L Z 2010 Acta Phys. Sin. 59 7701 (in Chinese) [朱孔金, 杨立中 2010 物理学报 59 7701]

    [20]

    Alizadeh R 2011 Safety Sci. 49 315

    [21]

    Guo R Y, Huang H J 2011 J. Stat. Mech. P04018

    [22]

    Chen L, Guo R Y, Ta N 2013 Acta Phys. Sin. 62 050506 (in Chinese) [陈亮, 郭仁拥, 塔娜 2013 物理学报 62 050506]

    [23]

    Tian H H, Dong L Y, Xue Y 2015 Physica A 420 164

  • [1] 杨灿, 陈群, 陈璐. 考虑在能见度受限下行人跟随行为特性的建模与模拟. 物理学报, 2019, 68(24): 240504. doi: 10.7498/aps.68.20190707
    [2] 张稷, 韦艳芳, 董力耘. 通道中行人-机动车相互作用机理的建模和模拟. 物理学报, 2018, 67(24): 240503. doi: 10.7498/aps.67.20181499
    [3] 梁经韵, 张莉莉, 栾悉道, 郭金林, 老松杨, 谢毓湘. 多路段元胞自动机交通流模型. 物理学报, 2017, 66(19): 194501. doi: 10.7498/aps.66.194501
    [4] 侯磊, 刘建国, 潘雪, 郭强, 汪秉宏. 火灾逃生过程的模拟与讨论以吉林禽业火灾为例. 物理学报, 2014, 63(17): 178902. doi: 10.7498/aps.63.178902
    [5] 禹尔东, 吴正, 郭明旻. 双出口房间人群疏散的实验研究和数学建模. 物理学报, 2014, 63(9): 094501. doi: 10.7498/aps.63.094501
    [6] 杨晓芳, 茅威, 付强. 基于动态地场和元胞自动机的自行车流建模. 物理学报, 2013, 62(24): 240511. doi: 10.7498/aps.62.240511
    [7] 陈亮, 郭仁拥, 塔娜. 双出口房间内疏散行人流的仿真和实验研究. 物理学报, 2013, 62(5): 050506. doi: 10.7498/aps.62.050506
    [8] 永贵, 黄海军, 许岩. 菱形网格的行人疏散元胞自动机模型. 物理学报, 2013, 62(1): 010506. doi: 10.7498/aps.62.010506
    [9] 谢积鉴, 薛郁. 通过博弈的室内行人疏散动力学研究. 物理学报, 2012, 61(19): 194502. doi: 10.7498/aps.61.194502
    [10] null. 初始位置布局不平衡的疏散行人流仿真研究. 物理学报, 2012, 61(13): 130509. doi: 10.7498/aps.61.130509
    [11] 陈然, 李翔, 董力耘. 地铁站内交织行人流的简化模型和数值模拟. 物理学报, 2012, 61(14): 144502. doi: 10.7498/aps.61.144502
    [12] 任刚, 陆丽丽, 王炜. 基于元胞自动机和复杂网络理论的双向行人流建模. 物理学报, 2012, 61(14): 144501. doi: 10.7498/aps.61.144501
    [13] 孙泽, 贾斌, 李新刚. 基于元胞自动机的行人和机动车相互干扰机理研究. 物理学报, 2012, 61(10): 100508. doi: 10.7498/aps.61.100508
    [14] 岳昊, 邵春福, 关宏志, 段龙梅. 基于元胞自动机的行人视线受影响的疏散流仿真研究. 物理学报, 2010, 59(7): 4499-4507. doi: 10.7498/aps.59.4499
    [15] 周金旺, 邝华, 刘慕仁, 孔令江. 成对行为对行人疏散动力学的影响研究. 物理学报, 2009, 58(5): 3001-3007. doi: 10.7498/aps.58.3001
    [16] 周金旺, 陈秀丽, 孔令江, 刘慕仁, 谭惠丽, 周建槐. 一种改进的多速双向行人流元胞自动机模型. 物理学报, 2009, 58(4): 2281-2285. doi: 10.7498/aps.58.2281
    [17] 岳昊, 邵春福, 姚智胜. 基于元胞自动机的行人疏散流仿真研究. 物理学报, 2009, 58(7): 4523-4530. doi: 10.7498/aps.58.4523
    [18] 岳 昊, 邵春福, 陈晓明, 郝合瑞. 基于元胞自动机的对向行人交通流仿真研究. 物理学报, 2008, 57(11): 6901-6908. doi: 10.7498/aps.57.6901
    [19] 花 伟, 林柏梁. 考虑行车状态的一维元胞自动机交通流模型. 物理学报, 2005, 54(6): 2595-2599. doi: 10.7498/aps.54.2595
    [20] 牟勇飚, 钟诚文. 基于安全驾驶的元胞自动机交通流模型. 物理学报, 2005, 54(12): 5597-5601. doi: 10.7498/aps.54.5597
计量
  • 文章访问数:  5949
  • PDF下载量:  419
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-02
  • 修回日期:  2015-07-20
  • 刊出日期:  2015-11-05

/

返回文章
返回