搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米微粒BaFe12O19掺杂对单畴超导块材GdBa2Cu3O7-δ性能的影响

张晓娟 张玉凤 彭里其 周文礼 徐燕 周迪帆 和泉充

引用本文:
Citation:

纳米微粒BaFe12O19掺杂对单畴超导块材GdBa2Cu3O7-δ性能的影响

张晓娟, 张玉凤, 彭里其, 周文礼, 徐燕, 周迪帆, 和泉充

Effect of BaFe12O19 nanoparticles doped on the properties of single domain GdBa2Cu3O7-δ high-temperature superconductors

Zhang Xiao-Juan, Zhang Yu-Feng, Peng Li-Qi, Zhou Wen-Li, Xu Yan, Zhou Di-Fan, Izumi Mitsuru
PDF
导出引用
  • 磁通钉扎性能对GdBa2Cu3O7-δ超导块材的实际应用具有重要的影响, 而引入合适的第二相粒子可以改善GdBa2Cu3O7-δ 超导块材的磁通钉扎性能.本文采用顶部籽晶熔融织构法成功地制备出纳米微粒BaFe12O19(x BaFe12O19 (x=0, 0.2 mol%, 0.4 mol%, 0.8 mol%)+ 10 wt%Ag2O+ 0.5 wt%Pt. 通过研究不同掺杂量的BaFe12O19微粒对GdBa2Cu3O7-δ 超导块材微观结构和超导性能的影响, 结果表明当掺杂量为0.2 mol%时, 样品的临界电流密度几乎在整个外加磁场下都有明显的提高.在零场下, 临界电流密度达到5.5× 104 A/cm2. 纳米微粒BaFe12O19不仅可以保持掺杂前的化学组成, 作为有效的钉扎中心存在于超导块材中, 并且能够改善Gd2BaCuO5粒子的分布和细化Gd2BaCuO5粒子, 使Gd2BaCuO5粒子的平均粒径由未掺杂时的1.4 μ m减小到掺杂后的0.79 μ m, 进而提高了超导块材的临界电流密度和俘获磁场, 明显提高了GdBa2Cu3O7-δ 超导块材的超导性能.临界温度TC也有所提升, 并能够维持在92.5 K左右. 该结果为进一步研究纳米磁通钉扎中心的引入并改善GdBa2Cu3O7-δ 超导块材的性能有着重要的意义.
    The flux pinning performance of the superconductor is important for the applications of the GdBa2Cu3O7-δ superconductor bulk. To introduce the suitable secondary phase into the GdBa2Cu3O7-δ matrix is an important way to enhance the performance of flux pinning. By using top-seeded melt texture growth process, single domain GdBa2Cu3O7-δ superconductor bulks (20 mm in diameter) doping with different quantities of BaFe12O19 nano-particles (12O19(x=0, 0.2 mol%, 0.4 mol%, 0.8 mol%)+ 10 wt% Ag2O+ 0.5 wt% Pt. The effects of different quantities of BaFe12O19 nano-particles on superconducting properties and microstructure are also investigated. The result shows that the critical current density, JC, with 0.2 mol% BaFe12O19 additions reaches a maximum value in the zero field, which is about 5.5 × 104 A/cm2. And the critical current density JC, almost increases in the whole field compared with those of the undoped bulks. The microstructure and chemical composition of GdBa2Cu3O7-δ bulk with BaFe12O19 nano-particles are implemented by the SEM-EDS technique. It is found that BaFe12O19 nano-particles keeps a similar form to that of the precursor in the final superconductor bulk. The average size of Gd2BaCuO5 particles is reduced from 1.4 μm in the undoped bulk to 0.79 μm in the bulk with 0.2 mol% BaFe12O19 nano-particles. We suggest that BaFe12O19 nano-particles may form effective magnetic flux centers in the bulks, which affects the homogeneous distribution and refinement of Gd2BaCuO5 particles. Therefore, the improvements in the critical current density and the trapped field are observed in the GdBa2Cu3O7-δ bulk with low-level doped content. The superconducting transition temperature TC, can be maintained at around 92.5 K. However, with the addition of 0.4 mol% BaFe12O19 nano-particles, the critical current density and superconducting transition temperature decrease obviously. It indicates that the excessive addition of BaFe12O19 nano-particles may affect the superconductivity properties to reduce the critical current density, JC. The result indicates that the low-level content BaFe12O19 nano-particles can be an effective second phase for the improvement of the GdBa2Cu3O7-δ superconductor bulks, which is very important for the further enhancing the superconducting properties of GdBa2Cu3O7-δ bulks by introducing the flux pinning of nano-particles.
      通信作者: 张玉凤, 2009000018@shiep.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11004129, 11204171)、留学回国人员科研启动基金(SRF for ROCS, SEM)、上海市教育委员会科研创新项目(批准号: 11YZ197, 12ZZ174)、上海市教育发展基金会晨光计划(批准号: 12CG63)和上海高校选拔培养优秀青年教师科研专项基金(批准号: sdl10005)资助的课题.
      Corresponding author: Zhang Yu-Feng, 2009000018@shiep.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11004129, 11204171), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Education Ministry of China (SRF for ROCS, SEM), the Innovation Program of Shanghai Municipal Education Commission, China (Grant Nos. 11YZ197, 12ZZ174), the “Chen Guang” Project of Shanghai Educational Development Foundation, China (Grant No. 12CG63), and the Shanghai University Scientific and Cultivation for Outstanding Young Teachers in Special Fund, China (Grant No. sdl10005).
    [1]

    Zhou D F, Izumi M, Miki M 2012 Supercond. Sci. Technol. 25 103001

    [2]

    Werfel F, Floegel U, Rothfeld D R 2012 Supercond. Sci. Technol. 25 014007

    [3]

    Wang Q L 2008 High Magnetic Field Superconducting Magnet (Beijing: Science Press) pp20-70 (in Chinese) [王秋良 2008 高磁场超导磁体科学 (北京: 科学出版社)第20–70页]

    [4]

    Cai Y Q, Yao X, Li G 2006 Acta Phys. Sin. 55 844 (in Chinese) [蔡衍卿, 姚忻, 李刚 2006 物理学报 55 844]

    [5]

    Inanira F, Yildizb S, Ozturkc K, Celebic S 2013 Chin. Phys. B 22 077402

    [6]

    Cardwell D A, Babu N H, Shi Y H, Iida K 2006 Supercond. Sci. Technol. 197 S510

    [7]

    Babu N H, Reddy E S, Cardwell D A 2003 Supercond. Sci. Technol. 16 L44

    [8]

    Wang M, Yang W M, Zhang X J, Tang Y N, Wang G F 2012 Acta Phys. Sin. 61 196102 (in Chinese) [王妙, 杨万民, 张晓菊, 唐艳妮, 王高峰 2012 物理学报 61 196102]

    [9]

    Li J W, Yang W M, Wang M, Guo Y X, Zhong L F 2015 J. Supercond. Nov. Magn. 28 1725

    [10]

    Hu S B, Xu K X, Cao Y, Zuo P X, Lian B W 2012 Chin. J. Low Temperature Phys. 34 297 (in Chinese) [胡顺波, 徐克西, 曹越, 左鹏翔, 连博文 2012低温物理学报 34 297]

    [11]

    Zhou D F, Izumi M, Fujimoto T, Zhang Y F, Zhou W L, Xu K 2015 IEEE Trans. Appl. Supercond. 25 6800204

    [12]

    Muralidhar M, Sakai N, Murakami M, Hirabayashi I 2008 Appl. Phys. Lett. 92 162512

    [13]

    Xu K, Tsuzuki K, Hara S, Zhou D, Zhang Y F, Murakami M, Nishio-Hamane D, Izumi M 2011 Supercond. Sci. Technol. 24 085001

    [14]

    Guo L P, Yang W M, Guo Y X, Chen L P, Li Q 2015 Acta Phys. Sin. 64 077401 (in Chinese) [郭莉萍, 杨万民, 郭玉霞, 陈丽平, 李强 2015 物理学报 64 077401]

    [15]

    Wang M, Yang W M, Ma J, Tang Y N, Zhang X J, Wang G F 2012 Sci. Sin.: Phys. Mech. Astron. 42 346 (in Chinese) [王妙, 杨万民, 马俊, 唐艳妮, 张晓菊, 王高峰2012 中国科学: 物理学 力学 天文学 42 346]

    [16]

    Wimbush S C, Durrell J H, Tsai C F, Wang H, Jia Q X, Blamire M G, MacManus-Driscoll J L 2010 Supercond. Sci. Technol. 23 045019

    [17]

    Li B Z, Zhou D F, Xu K, Tsuzuki K, Zhang J C, Izumi M 2014 Physica C 496 28

    [18]

    Zhang Y, Izumi M, Li Y J, Murakami M, Gao T, Liu Y S, Li P L 2011 Physica C 471 840

    [19]

    Chen D X, Goldfarb R B 1989 J. Appl. Phys. 66 2489

    [20]

    Tang Y N, Yang W M, Liang W, Wang M, Zhang X J, Li J W, Wang G F 2012 Chin. J. Low Temperature Phys. 34 211 (in Chinese) [唐艳妮, 杨万民, 梁伟, 王妙, 张晓菊, 李佳伟, 王高峰 2012低温物理学报 34 211]

    [21]

    Li P L, Wang Y Y, Tian Y T, Wang J, Niu X L, Wang J X, Wang D D, Wang X X 2008 Chin. Phys. B 17 3484

    [22]

    Zhou D F, Xu K, Hara S, Li B Z, Izumi M 2013 Trans. Nonferrous Met. Soc. China 23 2042

    [23]

    Xu C, Hu A, Sakai N, Izumi M, Hirabayashi I 2006 Physica C 445 357

    [24]

    Muralidhar M, Sakai N, Jirsa M, Murakami M, Hirabayashi I 2008 Appl. Phys. Lett. 92 162512

    [25]

    Koblischka M R, van Dalen A J J, Higuchi T, Yoo S I, Murakami M 1998 Phys. Rev. B 58 2863

    [26]

    Hara S, Zhou D F, Li B Z, Izumi M 2013 IEEE Trans. Appl. Supercond. 23 7200804

    [27]

    Li B Z, Xu K, Hara S, Zhou D F, Zhang Y F, Izumi M 2012 Physica C 475 51

    [28]

    Xu K, Zhou D F, Li B Z, Hara S, Deng Z G, Izumi M 2015 Physica C 510 54

    [29]

    Zhang Y F, Peng L Q, Zhou W L, Zhou X J, Jia L L, Izumi M 2015 IOP Conf. Series: Materials Science and Engineering 87 012077

    [30]

    Zhang Y F, Izumi M, Kimura Y, Xu Y 2009 Physica C: Supercond. Appl. 469 1169

  • [1]

    Zhou D F, Izumi M, Miki M 2012 Supercond. Sci. Technol. 25 103001

    [2]

    Werfel F, Floegel U, Rothfeld D R 2012 Supercond. Sci. Technol. 25 014007

    [3]

    Wang Q L 2008 High Magnetic Field Superconducting Magnet (Beijing: Science Press) pp20-70 (in Chinese) [王秋良 2008 高磁场超导磁体科学 (北京: 科学出版社)第20–70页]

    [4]

    Cai Y Q, Yao X, Li G 2006 Acta Phys. Sin. 55 844 (in Chinese) [蔡衍卿, 姚忻, 李刚 2006 物理学报 55 844]

    [5]

    Inanira F, Yildizb S, Ozturkc K, Celebic S 2013 Chin. Phys. B 22 077402

    [6]

    Cardwell D A, Babu N H, Shi Y H, Iida K 2006 Supercond. Sci. Technol. 197 S510

    [7]

    Babu N H, Reddy E S, Cardwell D A 2003 Supercond. Sci. Technol. 16 L44

    [8]

    Wang M, Yang W M, Zhang X J, Tang Y N, Wang G F 2012 Acta Phys. Sin. 61 196102 (in Chinese) [王妙, 杨万民, 张晓菊, 唐艳妮, 王高峰 2012 物理学报 61 196102]

    [9]

    Li J W, Yang W M, Wang M, Guo Y X, Zhong L F 2015 J. Supercond. Nov. Magn. 28 1725

    [10]

    Hu S B, Xu K X, Cao Y, Zuo P X, Lian B W 2012 Chin. J. Low Temperature Phys. 34 297 (in Chinese) [胡顺波, 徐克西, 曹越, 左鹏翔, 连博文 2012低温物理学报 34 297]

    [11]

    Zhou D F, Izumi M, Fujimoto T, Zhang Y F, Zhou W L, Xu K 2015 IEEE Trans. Appl. Supercond. 25 6800204

    [12]

    Muralidhar M, Sakai N, Murakami M, Hirabayashi I 2008 Appl. Phys. Lett. 92 162512

    [13]

    Xu K, Tsuzuki K, Hara S, Zhou D, Zhang Y F, Murakami M, Nishio-Hamane D, Izumi M 2011 Supercond. Sci. Technol. 24 085001

    [14]

    Guo L P, Yang W M, Guo Y X, Chen L P, Li Q 2015 Acta Phys. Sin. 64 077401 (in Chinese) [郭莉萍, 杨万民, 郭玉霞, 陈丽平, 李强 2015 物理学报 64 077401]

    [15]

    Wang M, Yang W M, Ma J, Tang Y N, Zhang X J, Wang G F 2012 Sci. Sin.: Phys. Mech. Astron. 42 346 (in Chinese) [王妙, 杨万民, 马俊, 唐艳妮, 张晓菊, 王高峰2012 中国科学: 物理学 力学 天文学 42 346]

    [16]

    Wimbush S C, Durrell J H, Tsai C F, Wang H, Jia Q X, Blamire M G, MacManus-Driscoll J L 2010 Supercond. Sci. Technol. 23 045019

    [17]

    Li B Z, Zhou D F, Xu K, Tsuzuki K, Zhang J C, Izumi M 2014 Physica C 496 28

    [18]

    Zhang Y, Izumi M, Li Y J, Murakami M, Gao T, Liu Y S, Li P L 2011 Physica C 471 840

    [19]

    Chen D X, Goldfarb R B 1989 J. Appl. Phys. 66 2489

    [20]

    Tang Y N, Yang W M, Liang W, Wang M, Zhang X J, Li J W, Wang G F 2012 Chin. J. Low Temperature Phys. 34 211 (in Chinese) [唐艳妮, 杨万民, 梁伟, 王妙, 张晓菊, 李佳伟, 王高峰 2012低温物理学报 34 211]

    [21]

    Li P L, Wang Y Y, Tian Y T, Wang J, Niu X L, Wang J X, Wang D D, Wang X X 2008 Chin. Phys. B 17 3484

    [22]

    Zhou D F, Xu K, Hara S, Li B Z, Izumi M 2013 Trans. Nonferrous Met. Soc. China 23 2042

    [23]

    Xu C, Hu A, Sakai N, Izumi M, Hirabayashi I 2006 Physica C 445 357

    [24]

    Muralidhar M, Sakai N, Jirsa M, Murakami M, Hirabayashi I 2008 Appl. Phys. Lett. 92 162512

    [25]

    Koblischka M R, van Dalen A J J, Higuchi T, Yoo S I, Murakami M 1998 Phys. Rev. B 58 2863

    [26]

    Hara S, Zhou D F, Li B Z, Izumi M 2013 IEEE Trans. Appl. Supercond. 23 7200804

    [27]

    Li B Z, Xu K, Hara S, Zhou D F, Zhang Y F, Izumi M 2012 Physica C 475 51

    [28]

    Xu K, Zhou D F, Li B Z, Hara S, Deng Z G, Izumi M 2015 Physica C 510 54

    [29]

    Zhang Y F, Peng L Q, Zhou W L, Zhou X J, Jia L L, Izumi M 2015 IOP Conf. Series: Materials Science and Engineering 87 012077

    [30]

    Zhang Y F, Izumi M, Kimura Y, Xu Y 2009 Physica C: Supercond. Appl. 469 1169

  • [1] 赵珀, 王建强, 陈梅清, 杨金学, 苏钲雄, 卢晨阳, 刘华军, 洪智勇, 高瑞. EuBa2Cu3O7–δ超导带材中掺杂相对He+离子辐照缺陷演化及超导电性的影响. 物理学报, 2024, 73(8): 087401. doi: 10.7498/aps.73.20240124
    [2] 梁超, 张洁, 赵可, 羊新胜, 赵勇. 拓扑超导体FeSexTe1–x单晶超导性能与磁通钉扎. 物理学报, 2020, 69(23): 237401. doi: 10.7498/aps.69.20201125
    [3] 程鹏, 杨育梅. 临界电流密度对圆柱状超导体力学特性的影响. 物理学报, 2019, 68(18): 187402. doi: 10.7498/aps.68.20190759
    [4] 董晓莉, 袁洁, 黄裕龙, 冯中沛, 倪顺利, 田金朋, 周放, 金魁, 赵忠贤. 铁硒基超导研究新进展:高质量(Li,Fe)OHFeSe单晶薄膜. 物理学报, 2018, 67(12): 127403. doi: 10.7498/aps.67.20180770
    [5] 王三胜, 李方, 吴晗, 张竺立, 蒋雯, 赵鹏. 低能离子对高温超导YBa2Cu3O7-薄膜的表面改性和机理. 物理学报, 2018, 67(3): 036103. doi: 10.7498/aps.67.20170822
    [6] 王妙, 邬华春, 杨万民, 杨芃焘, 王小梅, 郝大鹏, 党文佳, 张明, 胡成西. BaO掺杂对单畴GdBCO超导块材性能的影响(二). 物理学报, 2017, 66(16): 167401. doi: 10.7498/aps.66.167401
    [7] 郭莉萍, 杨万民, 郭玉霞, 陈丽平, 李强. Ni2O3掺杂对新固相源顶部籽晶熔渗生长法制备单畴GdBCO超导块材超导性能的影响. 物理学报, 2015, 64(7): 077401. doi: 10.7498/aps.64.077401
    [8] 郭志超, 李平林. 晶粒细化对MgB2超导临界电流密度的作用. 物理学报, 2014, 63(6): 067401. doi: 10.7498/aps.63.067401
    [9] 陈艺灵, 张辰, 何法, 王达, 王越, 冯庆荣. MgB2超导膜的厚度与其Jc(5K,0T)的关系. 物理学报, 2013, 62(19): 197401. doi: 10.7498/aps.62.197401
    [10] 李颉, 张怀武, 李元勋, 李强, 秦军锋. 稀土元素La掺杂BaFe12O19 微结构和磁性能的研究. 物理学报, 2012, 61(22): 227501. doi: 10.7498/aps.61.227501
    [11] 陈昌兆, 蔡传兵, 刘志勇, 应利良, 高 波, 刘金磊, 鲁玉明. NdBa2Cu3O7-δ/YBa2Cu3O7-δ多层膜体系的外延结构和磁通钉扎的研究. 物理学报, 2008, 57(7): 4371-4378. doi: 10.7498/aps.57.4371
    [12] 陈荣华, 朱明原, 李 瑛, 李文献, 金红明, 窦士学. 脉冲磁场处理对碳纳米管掺杂MgB2线材临界电流密度的影响. 物理学报, 2006, 55(9): 4878-4882. doi: 10.7498/aps.55.4878
    [13] 刘峰, 黄钧伟, 刘伟, 肖玲, 任洪涛, 焦玉磊, 郑明辉, 阎守胜. 弱场下熔融织构YBa2Cu3O7-δ样品局域磁通蠕动的实验研究. 物理学报, 2001, 50(10): 2001-2007. doi: 10.7498/aps.50.2001
    [14] 王峰, 孙国庆, 孔祥木, 单磊, 金新, 张宏. YBa2Cu3O7-δ熔融织构样品的磁响应研究. 物理学报, 2001, 50(8): 1590-1595. doi: 10.7498/aps.50.1590
    [15] 韩谷昌, 韩汉民, 王智河, 王顺喜, 刘小宁, 刘智民, 奚正平, 周廉. 银包套Bi(2223)带材临界电流密度的低温强磁场特性. 物理学报, 1995, 44(8): 1274-1278. doi: 10.7498/aps.44.1274
    [16] 卫崇德, 刘尊孝, 甘子钊, 任洪涛, 肖玲, 贺庆. 中子辐照熔融织构YBa2Cu3Oy的临界电流. 物理学报, 1992, 41(11): 1884-1890. doi: 10.7498/aps.41.1884
    [17] 范宏昌, 金新, 鹿牧, 张贻瞳, 徐小农, 姚希贤. 熔融织构YBa2Cu3O7-y各向异性临界电流密度的磁测量. 物理学报, 1992, 41(2): 317-322. doi: 10.7498/aps.41.317
    [18] 方明虎, 夏健生, 许祝安, 赵展春, 孙敦明, 陈祖耀, 钱逸泰, 张其瑞. GdBa2Cu3O7-δ单晶的各向异性研究. 物理学报, 1989, 38(2): 313-316. doi: 10.7498/aps.38.313
    [19] 都有为, 陆怀先, 蒋亚净, 王挺祥. 水热法生成BaFe12O19铁氧体的相变过程. 物理学报, 1984, 33(4): 579-582. doi: 10.7498/aps.33.579
    [20] 刘寄浙, 鹿牧, 韩世莹, 翟宏如. Co2+-Ti4+和Cu2+-Nb5+离子取代BaFe12O19单晶体中Fe3+离子的研究. 物理学报, 1983, 32(11): 1369-1375. doi: 10.7498/aps.32.1369
计量
  • 文章访问数:  4764
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-13
  • 修回日期:  2015-09-25
  • 刊出日期:  2015-12-05

/

返回文章
返回