搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用N型半导体纳米材料抑制单量子点的荧光闪烁特性

王早 张国峰 李斌 陈瑞云 秦成兵 肖连团 贾锁堂

引用本文:
Citation:

利用N型半导体纳米材料抑制单量子点的荧光闪烁特性

王早, 张国峰, 李斌, 陈瑞云, 秦成兵, 肖连团, 贾锁堂

Suppression of the blinking of single QDs by using an N-type semiconductor nanomaterial

Wang Zao, Zhang Guo-Feng, Li Bin, Chen Rui-Yun, Qin Cheng-Bing, Xiao Lian-Tuan, Jia Suo-Tang
PDF
导出引用
  • 利用N型半导体纳米材料氧化铟锡(ITO)作为单CdSe/ZnS量子点的基质来抑制单量子点的荧光闪烁特性. 实验采用激光扫描共聚焦显微成像系统测量了单量子点荧光的亮、暗态持续时间的概率密度分布的指数截止的幂律特性, 并与直接吸附在SiO2玻片上的单CdSe/ZnS量子点的荧光特性进行比较. 研究发现处于ITO中的单量子点比SiO2玻片上的单量子点荧光亮态持续时间提高两个数量级, 掺杂于ITO中的单量子点的荧光寿命约减小为SiO2玻片上的单量子点的荧光寿命的41%, 并且寿命分布宽度变小50%.
    Single quantum dots (QDs) always exhibit strong blinking in fluorescence intensity when they are on some inert substrates. The blinking activity is attributed to the photoinduced charging of QDs by electron transfer (ET) to trap states in QDs and the surrounding matrix, which has been considered as an undesirable property in many applications. Here, we use N-doped indium tin oxide (ITO) semiconductor nanoparticles to suppress fluorescence blinking activity of single CdSe/ZnS core/shell QDs. The fluorescence characteristics of single QDs in ITO and on SiO2 cover glass are measured by a laser scanning confocal fluorescence microscopy, respectively. It is found that the on-and off-state probability densities of QDs on different substrates both can be fit by a truncated power law. Blinking rates for single QDs on glass and in ITO are also calculated. By contrast, single QDs doped in ITO show that their blinking rate and fluorescence lifetime both decrease. The on-state probability density of single QDs in ITO is approximately two orders of magnitude higher than that of QDs on SiO2 cover glass. It means that single QDs doped in ITO have a longer time to be on-state. Because the Fermi level in QDs is lower than in ITO, when they are in contact, electrons in ITO will transfer to QDs. As a result, the equilibration of their Fermi levels leads to the formation of negatively charged QDs. These electrons fill in the holes of QDs shell and enhance the on-state probability of QDs. Fluorescence decays of single QDs on glass and in ITO are measured by TAC/MCA, and they can be fit by biexponential function. The two lifetime values correspond to the single exciton lifetime and biexciton lifetime of QDs, respectively. It is worth noting that the distribution of the amplitude weighted average lifetime for single QDs in ITO is approximately 41% of that for single QDs on SiO2 cover glass and its full width at half maximum (FWHM) is changed to 50%. For the conduction band potential of QDs is higher than that of ITO, which contributes to photoinduced interfacial electron transfer from QDs to ITO and leads to the increase of nonradiative transition. These indicate that ITO can reduce single exciton and biexciton lifetime of QDs. The study demonstrates that ITO can effectively suppress the blinking activity of QDs.
      通信作者: 肖连团, xlt@sxu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2012CB921603)、国家自然科学基金(批准号: 11374196, 11174187, 10934004, 11204166, 11404200)、教育部长江学者和创新团队发展计划(批准号: IRT13076)、教育部博士点基金(批准号: 20121401120016)和山西省留学回国人员科技活动择优项目资助的课题.
      Corresponding author: Xiao Lian-Tuan, xlt@sxu.edu.cn
    • Funds: Project supported by the National Basic Program of China (Grant No. 2012CB921603), the National Natural Science Foundation of China (Grant Nos. 11374196, 11174187, 10934004, 11204166, 11404200), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT13076), the Doctoral Foundation of the Education Ministry of China (Grant No. 20121401120016), and the Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province, China.
    [1]

    Kloepfer J A, Bradforth S E, Nadeau J L 2005 J. Phys. Chem. B 109 9996

    [2]

    Sungwoo K, Hyuk Im S, Sang-Wook K 2013 Nanoscale 5 5205

    [3]

    Sambur J B, Novet T, Parkinson1 B A 2010 Science 330 63

    [4]

    Li W J, Zhong X H 2015 Acta Phys. Sin. 64 038806 (in Chinese) [李文杰, 钟新华 2015 物理学报 64 038806]

    [5]

    Bruchez Jr M, Moronne M, Gin P, Weiss S, Paul Alivisatos A 1998 Science 281 2013

    [6]

    Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S, Schmid S L, Danuser G 2008 Nat. Methods 5 695

    [7]

    Dertinger T, Colyer R, Iyer G, Weiss R, Enderlein J 2009 Proc. Natl. Acad. Sci. 106 22287

    [8]

    Peterson J J, Nesbitt D J 2009 Nano Lett. 9 338

    [9]

    Galland C, Ghosh Y, Steinbrck A, Sykora M, Hollingsworth J A, Klimov V I, Htoon H 2011 Nature 479 203

    [10]

    Kiraz A, Atatre M, Imamoğlu A 2004 Phys. Rev. A 69 032305

    [11]

    Aldana J, Wang Y A, Peng X G 2001 J. Am. Chem. Soc. 123 8844

    [12]

    Guo W Z, Li J J, Wang Y A, Peng X G 2003 J. Am. Chem. Soc. 125 3901

    [13]

    Jin S Y, Song N H, Lian T Q 2010 ACS Nano 4 1545

    [14]

    Wu J F, Zhang G F, Chen R Y, Qin C B, Xiao L T, Jia S T 2014 Acta Phys. Sin. 63 167302 (in Chinese) [吴建芳, 张国峰, 陈瑞云, 秦成兵, 肖连团, 贾锁堂 2014 物理学报 63 167302]

    [15]

    Nagao Y, Fujiwara H, Sasaki K 2014 J. Phys. Chem. C 118 20571

    [16]

    Zhou X D, Zhang S F, Zhou S H 2015 Acta Phys. Sin. 64 167301 (in Chinese) [周小东, 张少锋, 周思华 2015 物理学报 64 167301]

    [17]

    Hohng S, Ha T 2004 J. Am. Chem. Soc. 126 1324

    [18]

    Schafer S, Wang Z, Kipp T, Mews A 2011 Phys. Rev. Lett. 107 137403

    [19]

    Chiba T, Qi J, Fujiwara H, Sasaki K 2013 J. Phys. Chem. C 117 2507

    [20]

    LeBlanc S J, McClanahan M R, Moyer T, Jones M, Moyer P J 2014 Appl. Phys. 115 034306

    [21]

    Li Y, Liu R W, Ma L, Fan S N, Li H, Hu S X, Li M 2015 Chin. Phys. B 24 078202

    [22]

    Chang Y P, Tsai P Y, Lee H L, Lin K C 2013 Electroanalysis 25 1064

    [23]

    Wu X Y, Yeow E K L 2010 Chem. Commun. 46 4390

    [24]

    Kuno M, Fromm D P, Hamann H F, Gallagher A, Nesbitt D J 2000 J. Chem. Phys. 112 3117

    [25]

    Tang J, Marcus R A 2005 Phys. Rev. Lett. 95 107401

    [26]

    Cheng H W, Yuan C T, Wang J S, Lin T N, Shen J L, Hung Y L, Tang J, Tseng F G 2014 J. Phys. Chem. C 118 18126

    [27]

    Fisher B, Caruge J M, Zehnder D, Bawendi M G 2005 Phys. Rev. Lett. 94 087403

    [28]

    Mangum B D, Ghosh Y, Hollingsworth J A, Htoon H 2013 Opt. Express 21 7419

    [29]

    Inamdar S N, Ingole P P, Haram S K 2008 Chem. Phys. Chem. 9 2574

    [30]

    Debnath T, Maity P, Banerjee T, Das A, Ghosh H N 2015 J. Phys. Chem. C 119 3522

    [31]

    Zhang G F, Xiao L T, Chen R Y, Gao Y, Jia S T 2011 Phys. Chem. Chem. Phys. 13 13815

  • [1]

    Kloepfer J A, Bradforth S E, Nadeau J L 2005 J. Phys. Chem. B 109 9996

    [2]

    Sungwoo K, Hyuk Im S, Sang-Wook K 2013 Nanoscale 5 5205

    [3]

    Sambur J B, Novet T, Parkinson1 B A 2010 Science 330 63

    [4]

    Li W J, Zhong X H 2015 Acta Phys. Sin. 64 038806 (in Chinese) [李文杰, 钟新华 2015 物理学报 64 038806]

    [5]

    Bruchez Jr M, Moronne M, Gin P, Weiss S, Paul Alivisatos A 1998 Science 281 2013

    [6]

    Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S, Schmid S L, Danuser G 2008 Nat. Methods 5 695

    [7]

    Dertinger T, Colyer R, Iyer G, Weiss R, Enderlein J 2009 Proc. Natl. Acad. Sci. 106 22287

    [8]

    Peterson J J, Nesbitt D J 2009 Nano Lett. 9 338

    [9]

    Galland C, Ghosh Y, Steinbrck A, Sykora M, Hollingsworth J A, Klimov V I, Htoon H 2011 Nature 479 203

    [10]

    Kiraz A, Atatre M, Imamoğlu A 2004 Phys. Rev. A 69 032305

    [11]

    Aldana J, Wang Y A, Peng X G 2001 J. Am. Chem. Soc. 123 8844

    [12]

    Guo W Z, Li J J, Wang Y A, Peng X G 2003 J. Am. Chem. Soc. 125 3901

    [13]

    Jin S Y, Song N H, Lian T Q 2010 ACS Nano 4 1545

    [14]

    Wu J F, Zhang G F, Chen R Y, Qin C B, Xiao L T, Jia S T 2014 Acta Phys. Sin. 63 167302 (in Chinese) [吴建芳, 张国峰, 陈瑞云, 秦成兵, 肖连团, 贾锁堂 2014 物理学报 63 167302]

    [15]

    Nagao Y, Fujiwara H, Sasaki K 2014 J. Phys. Chem. C 118 20571

    [16]

    Zhou X D, Zhang S F, Zhou S H 2015 Acta Phys. Sin. 64 167301 (in Chinese) [周小东, 张少锋, 周思华 2015 物理学报 64 167301]

    [17]

    Hohng S, Ha T 2004 J. Am. Chem. Soc. 126 1324

    [18]

    Schafer S, Wang Z, Kipp T, Mews A 2011 Phys. Rev. Lett. 107 137403

    [19]

    Chiba T, Qi J, Fujiwara H, Sasaki K 2013 J. Phys. Chem. C 117 2507

    [20]

    LeBlanc S J, McClanahan M R, Moyer T, Jones M, Moyer P J 2014 Appl. Phys. 115 034306

    [21]

    Li Y, Liu R W, Ma L, Fan S N, Li H, Hu S X, Li M 2015 Chin. Phys. B 24 078202

    [22]

    Chang Y P, Tsai P Y, Lee H L, Lin K C 2013 Electroanalysis 25 1064

    [23]

    Wu X Y, Yeow E K L 2010 Chem. Commun. 46 4390

    [24]

    Kuno M, Fromm D P, Hamann H F, Gallagher A, Nesbitt D J 2000 J. Chem. Phys. 112 3117

    [25]

    Tang J, Marcus R A 2005 Phys. Rev. Lett. 95 107401

    [26]

    Cheng H W, Yuan C T, Wang J S, Lin T N, Shen J L, Hung Y L, Tang J, Tseng F G 2014 J. Phys. Chem. C 118 18126

    [27]

    Fisher B, Caruge J M, Zehnder D, Bawendi M G 2005 Phys. Rev. Lett. 94 087403

    [28]

    Mangum B D, Ghosh Y, Hollingsworth J A, Htoon H 2013 Opt. Express 21 7419

    [29]

    Inamdar S N, Ingole P P, Haram S K 2008 Chem. Phys. Chem. 9 2574

    [30]

    Debnath T, Maity P, Banerjee T, Das A, Ghosh H N 2015 J. Phys. Chem. C 119 3522

    [31]

    Zhang G F, Xiao L T, Chen R Y, Gao Y, Jia S T 2011 Phys. Chem. Chem. Phys. 13 13815

  • [1] 刘天, 李宗良, 张延惠, 蓝康. 耗散环境单量子点体系输运过程的量子速度极限研究. 物理学报, 2023, 72(4): 047301. doi: 10.7498/aps.72.20222159
    [2] 李斌, 苗向阳. 单个CsPbBr3钙钛矿量子点的荧光闪烁特性. 物理学报, 2021, 70(20): 207802. doi: 10.7498/aps.70.20210908
    [3] 张强强, 胡建勇, 景明勇, 李斌, 秦成兵, 李耀, 肖连团, 贾锁堂. 单光子调制频谱用于量子点荧光寿命动力学的研究. 物理学报, 2019, 68(1): 017803. doi: 10.7498/aps.68.20181797
    [4] 乔志星, 秦成兵, 贺文君, 弓亚妮, 张晓荣, 张国峰, 陈瑞云, 高岩, 肖连团, 贾锁堂. 通过光致还原调制氧化石墨烯寿命并用于微纳图形制备. 物理学报, 2018, 67(6): 066802. doi: 10.7498/aps.67.20172331
    [5] 苏丹, 窦秀明, 丁琨, 王海艳, 倪海桥, 牛智川, 孙宝权. 金纳米颗粒光散射提高InAs单量子点荧光提取效率. 物理学报, 2015, 64(23): 235201. doi: 10.7498/aps.64.235201
    [6] 王海艳, 窦秀明, 倪海桥, 牛智川, 孙宝权. 等离子体增强InAs单量子点荧光辐射的研究. 物理学报, 2014, 63(2): 027801. doi: 10.7498/aps.63.027801
    [7] 吴建芳, 张国峰, 陈瑞云, 秦成兵, 肖连团, 贾锁堂. 界面电子转移对量子点荧光闪烁行为的影响. 物理学报, 2014, 63(16): 167302. doi: 10.7498/aps.63.167302
    [8] 沈应龙, 唐春梅, 盛秋春, 刘双, 李文涛, 王龙飞, 陈丹平. 铈铕共掺高钆氧化物玻璃的发光性能及能量传递效应. 物理学报, 2013, 62(11): 117803. doi: 10.7498/aps.62.117803
    [9] 毕长虹, 孟庆裕. CaWO4:Sm3+荧光粉的发光性质及其能量传递机理. 物理学报, 2013, 62(19): 197804. doi: 10.7498/aps.62.197804
    [10] 万文博, 华灯鑫, 乐静, 刘美霞, 曹宁. 激光诱导叶绿素荧光寿命的测量及其特性分析. 物理学报, 2013, 62(19): 190601. doi: 10.7498/aps.62.190601
    [11] 杨振岭, 刘玉强, 杨延强. 银纳米颗粒对四苯基卟啉Q带荧光寿命的延长. 物理学报, 2012, 61(3): 037805. doi: 10.7498/aps.61.037805
    [12] 盛于邦, 杨旅云, 栾怀训, 刘自军, 李进延, 戴能利. 辐照对掺Er硅酸盐玻璃吸收和发光特性的影响. 物理学报, 2012, 61(11): 116301. doi: 10.7498/aps.61.116301
    [13] 高当丽, 张翔宇, 张正龙, 徐良敏, 雷瑜, 郑海荣. 调控声子提高Tm3+掺杂体系的频率上转换荧光. 物理学报, 2009, 58(9): 6108-6112. doi: 10.7498/aps.58.6108
    [14] 徐 登, 叶莉华, 崔一平, 奚 俊, 李 丽, 王 琼. 基于有机染料盐掺杂薄膜体系的能量转移及光致发光特性研究. 物理学报, 2008, 57(5): 3267-3270. doi: 10.7498/aps.57.3267
    [15] 丁 君, 杨秋红, 唐在峰, 徐 军, 苏良碧. Er3+/Yb3+共掺的氧化镧钇透明陶瓷的光谱性能研究. 物理学报, 2007, 56(4): 2207-2211. doi: 10.7498/aps.56.2207
    [16] 王雪俊, 夏海平. Bi离子掺杂GeO2-Al2O3-M(M=Na2O,BaO,Y2O3)玻璃的光学性质. 物理学报, 2006, 55(10): 5263-5267. doi: 10.7498/aps.55.5263
    [17] 刘立新, 屈军乐, 林子扬, 陈丹妮, 许改霞, 胡 涛, 郭宝平, 牛憨笨. 双光子激发时间分辨荧光光谱测量技术. 物理学报, 2006, 55(12): 6281-6286. doi: 10.7498/aps.55.6281
    [18] 苗 壮, 李善锋, 张庆瑜. Y共掺对掺Er硅酸盐玻璃光致荧光及荧光寿命的影响. 物理学报, 2006, 55(8): 4321-4326. doi: 10.7498/aps.55.4321
    [19] 林子扬, 付 哲, 刘立新, 胡 涛, 屈军乐, 郭宝平, 牛憨笨. 双光子阵列点激发同时多维荧光信息的处理. 物理学报, 2006, 55(12): 6701-6707. doi: 10.7498/aps.55.6701
    [20] 王茜蒨, 魏光辉. 机油类产品激光诱导荧光时间特性的研究. 物理学报, 2002, 51(5): 1031-1034. doi: 10.7498/aps.51.1031
计量
  • 文章访问数:  5763
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-25
  • 修回日期:  2015-09-08
  • 刊出日期:  2015-12-05

/

返回文章
返回