搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类时变时滞混沌系统的参数辨识方法

柴琴琴

引用本文:
Citation:

一类时变时滞混沌系统的参数辨识方法

柴琴琴

A method of identifying parameters of a time-varying time-delay chaotic system

Chai Qin-Qin
PDF
导出引用
  • 时变的未知时滞参数普遍存在于混沌系统中,它使得混沌系统同步控制变得非常困难. 针对时滞混沌系统中参数时变且未知的问题, 提出了一种新颖的辨识方法. 该方法首先将未知时变参数用分段常数函数来近似, 把求解非线性函数的问题转化为参数向量选择问题, 其中分段常数函数的高度向量成为待求解参数向量; 然后推导了目标函数对分段常数高度向量的梯度信息, 结合序列二次规划法求解得最优分段函数; 随着分段数的增加, 最优分段函数将逼近原非线性时变函数. 数值实例结果验证了该方法的有效性.
    Unknown time-varying parameters, including time-delay and system parameters, commonly exist in chaotic systems. These unknown parameters increase the difficulties in controlling the chaotic systems, and make most of the existing control methods fail to be applied. However, if these parameters can be estimated, they will facilitate the controller design. Therefore, in this paper, a parameter identification problem for a general time-delay chaotic system with unknown and time-varying parameters is considered, where these unknown time-delay and parameters are slow time-varying. It is very difficult to solve this problem analytically. Thus, a unified identification method is proposed to solve the identification problem numerically. To solve this identification problem, firstly, the time horizon is divided into several subintervals evenly. Then the time-varying parameters are approximated by piecewise constant functions. The height vectors of the piecewise constant functions are unknown and to be determined. Furthermore, the heights of the piecewise constant functions keep constant between each pair of the successive partition time points but switch values at the partition time points. After the approximation, the original identification problem for finding the nonlinear functions of the unknown parameters is transformed into a problem of selecting approximate parameter vectors, where the heights of the piecewise constan functions are unknown parameter vectors to be determined. Secondly, to solve the problem of selecting approximate parameter vectors quickly, the partial gradients of the objective function with respect to the parameter vectors are derived; and they are then integrated with a gradient-based procedure to obtain the unknown heights. As the number of partitions for the piecewise function increases, the optimal results of the approximate problem will approach to the optimal results of the original parameter identification problem. Hence, the optimal piecewise functions will approach to the real nonlinear functions for the unknown parameters. Finally, parameter identification experiments on time-delayed Mackey-Class and time-delayed logistic chaotic systems are carried out. The effects of the partition number on the estimated results are discussed. Numerical results demonstrate that when some switching times of the unknown parameters do not coincide with any partition time points, small error between the estimated results and the real values are present. However, these errors can be filtered and the estimated results are consistent well with the real values. Hence, the proposed method is reasonable and effective.
      通信作者: 柴琴琴, kppqing@163.com
    • 基金项目: 国家自然科学基金(批准号: 61304260)和福州大学人才基金(批准号: XRC-1353)资助的课题.
      Corresponding author: Chai Qin-Qin, kppqing@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61304260) and the Fuzhou University Fund for Talents, China (Grant No. XRC-1353).
    [1]

    Xu J, Pei L J 2006 Adv. Mech. 36 17 (in Chinese) [徐鉴, 裴利军 2006 力学进展 36 17]

    [2]

    Denis-Vidal L, Jauberthie C, Joly-Blanchard G 2006 IEEE Trans. Automat. Contr. 51 154

    [3]

    Zeng Z Z 2013 Acta Phys. Sin. 62 030504 (in Chinese) [曾喆昭 2013 物理学报 62 030504]

    [4]

    Louodop P, Fotsin H, Samuel B, Soup Tewa Kammogne A 2014 J. Vib. Control 20 815

    [5]

    Wang S, Yang J, Luan H X 2014 J. Northeast Norm. Univ: (Nat. Sci. Ed.) 46 69 (in Chinese) [王石, 杨吉, 栾红霞 2014 东北师大学报 (自然科学版) 46 69]

    [6]

    Leung Y T A, Li X F, Chu Y D, Zhang H 2015 Chin. Phys. B 24 10050

    [7]

    Luo R Z, Zeng Y H 2015 Nonlinear Dyn. 80 989

    [8]

    Wu Z G, Shi P, Su H Y, Chu J 2014 IEEE Trans. Fuzzy Syzt. 22 153

    [9]

    Chen Y Q, Xu H L 2012 Syst. Eng. Theory Pract. 32 1958 (in Chinese) [陈远强, 许弘雷 2012 系统工程理论与实践 32 1958]

    [10]

    Wu X L, Liu J, Zhang J H, Wang Y 2014 Acta Phys. Sin. 63 160507 (in Chinese) [吴学礼, 刘杰, 张建华, 王英 2014 物理学报 63 160507]

    [11]

    Jian J G, Wan P 2015 Physica A 431 152

    [12]

    Huang Y, Liu Y F, Peng Z M, Ding Y J 2015 Acta Phys. Sin. 64 030505 (in Chinese) [黄宇, 刘玉峰, 彭志敏, 丁艳军 2015 物理学报 64 030505]

    [13]

    Jiang Q Y, Wang L, Hei X H 2015 J. Comput. Sci-Neth. 8 20

    [14]

    Gu W D, Sun Z Y, Wu X M, Yu C B 2013 Chin. Phys. B 22 090203

    [15]

    Zhao L D, Hu J B, Fang J A, Cui W X, Xu Y L, Wang X 2013 ISA Trans. 52 738

    [16]

    Wang S E, Wang W W, Liu F C, Tang Y G, Guan X P 2015 Nonlinear Dyn. 81 1081

    [17]

    Chai Q Q, Loxton R, Teo K L, Yang C H 2013 J. Ind. Manag. Optim. 9 471

    [18]

    Na J, Ren X M, Xia Y Q 2014 Syst. Control Lett. 66 43

    [19]

    Zunino L, Soriano M C, Fischer I, Rosso O A, Mirasso C R 2010 Phys. Rev. E 82 046212

    [20]

    Teo K L, Goh C J, Wong K H 1991 A Unified Computational Approach to Optimal Control Problems (Essex: Longman Scientific and Technical) pp253-278

    [21]

    Burden R L, Faires J D 2010 Numerical Analysis (Singapore: Cengage Learning) pp136-143

    [22]

    Wang F P, Wang Z J, Guo J B 2003 J. Tsinghua Univ. (Sci. and Tech.) 43 296 (in Chinese)[汪芙平, 王赞基, 郭静波 2003 清华大学学报(自然科学版) 43 296]

    [23]

    Mendes R, Kennedy J, Neves J 2004 IEEE Trans. Evolut. Comput. 8 204

  • [1]

    Xu J, Pei L J 2006 Adv. Mech. 36 17 (in Chinese) [徐鉴, 裴利军 2006 力学进展 36 17]

    [2]

    Denis-Vidal L, Jauberthie C, Joly-Blanchard G 2006 IEEE Trans. Automat. Contr. 51 154

    [3]

    Zeng Z Z 2013 Acta Phys. Sin. 62 030504 (in Chinese) [曾喆昭 2013 物理学报 62 030504]

    [4]

    Louodop P, Fotsin H, Samuel B, Soup Tewa Kammogne A 2014 J. Vib. Control 20 815

    [5]

    Wang S, Yang J, Luan H X 2014 J. Northeast Norm. Univ: (Nat. Sci. Ed.) 46 69 (in Chinese) [王石, 杨吉, 栾红霞 2014 东北师大学报 (自然科学版) 46 69]

    [6]

    Leung Y T A, Li X F, Chu Y D, Zhang H 2015 Chin. Phys. B 24 10050

    [7]

    Luo R Z, Zeng Y H 2015 Nonlinear Dyn. 80 989

    [8]

    Wu Z G, Shi P, Su H Y, Chu J 2014 IEEE Trans. Fuzzy Syzt. 22 153

    [9]

    Chen Y Q, Xu H L 2012 Syst. Eng. Theory Pract. 32 1958 (in Chinese) [陈远强, 许弘雷 2012 系统工程理论与实践 32 1958]

    [10]

    Wu X L, Liu J, Zhang J H, Wang Y 2014 Acta Phys. Sin. 63 160507 (in Chinese) [吴学礼, 刘杰, 张建华, 王英 2014 物理学报 63 160507]

    [11]

    Jian J G, Wan P 2015 Physica A 431 152

    [12]

    Huang Y, Liu Y F, Peng Z M, Ding Y J 2015 Acta Phys. Sin. 64 030505 (in Chinese) [黄宇, 刘玉峰, 彭志敏, 丁艳军 2015 物理学报 64 030505]

    [13]

    Jiang Q Y, Wang L, Hei X H 2015 J. Comput. Sci-Neth. 8 20

    [14]

    Gu W D, Sun Z Y, Wu X M, Yu C B 2013 Chin. Phys. B 22 090203

    [15]

    Zhao L D, Hu J B, Fang J A, Cui W X, Xu Y L, Wang X 2013 ISA Trans. 52 738

    [16]

    Wang S E, Wang W W, Liu F C, Tang Y G, Guan X P 2015 Nonlinear Dyn. 81 1081

    [17]

    Chai Q Q, Loxton R, Teo K L, Yang C H 2013 J. Ind. Manag. Optim. 9 471

    [18]

    Na J, Ren X M, Xia Y Q 2014 Syst. Control Lett. 66 43

    [19]

    Zunino L, Soriano M C, Fischer I, Rosso O A, Mirasso C R 2010 Phys. Rev. E 82 046212

    [20]

    Teo K L, Goh C J, Wong K H 1991 A Unified Computational Approach to Optimal Control Problems (Essex: Longman Scientific and Technical) pp253-278

    [21]

    Burden R L, Faires J D 2010 Numerical Analysis (Singapore: Cengage Learning) pp136-143

    [22]

    Wang F P, Wang Z J, Guo J B 2003 J. Tsinghua Univ. (Sci. and Tech.) 43 296 (in Chinese)[汪芙平, 王赞基, 郭静波 2003 清华大学学报(自然科学版) 43 296]

    [23]

    Mendes R, Kennedy J, Neves J 2004 IEEE Trans. Evolut. Comput. 8 204

  • [1] 李晓杰, 喻云泰, 张志文, 董小瑞. 基于电化学老化衰退模型的锂离子动力电池外特性. 物理学报, 2022, 71(3): 038803. doi: 10.7498/aps.71.20211401
    [2] 李晓杰, 喻云泰, 张志文, 董小瑞. 基于ADME模型的锂离子动力电池外特性研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211401
    [3] 王聪, 张宏立. 基于原对偶状态转移算法的分数阶多涡卷混沌系统辨识. 物理学报, 2016, 65(6): 060503. doi: 10.7498/aps.65.060503
    [4] 李睿, 张广军, 姚宏, 朱涛, 张志浩. 参数不确定的分数阶混沌系统广义错位延时投影同步. 物理学报, 2014, 63(23): 230501. doi: 10.7498/aps.63.230501
    [5] 刘乐柱, 张季谦, 许贵霞, 梁立嗣, 汪茂胜. 一种基于混沌系统部分序列参数辨识的混沌保密通信方法. 物理学报, 2014, 63(1): 010501. doi: 10.7498/aps.63.010501
    [6] 曹小群, 张卫民, 宋君强, 朱小谦, 赵军. 非线性映射参数辨识的离散变分方法. 物理学报, 2012, 61(2): 020507. doi: 10.7498/aps.61.020507
    [7] 陶洪峰, 胡寿松. 参数未知分段混沌系统的时滞广义投影同步. 物理学报, 2011, 60(1): 010514. doi: 10.7498/aps.60.010514
    [8] 孙洁, 刘树堂, 乔威. 广义Julia 集的参数辨识. 物理学报, 2011, 60(7): 070510. doi: 10.7498/aps.60.070510
    [9] 李农, 李建芬, 刘宇平. 一类参数未知混沌系统的追踪控制与参数辨识. 物理学报, 2011, 60(5): 050507. doi: 10.7498/aps.60.050507
    [10] 杨东升, 张化光, 赵琰, 宋崇辉, 王迎春. 基于LMI的参数未知时变时滞混沌系统模糊自适应H∞同步. 物理学报, 2010, 59(3): 1562-1567. doi: 10.7498/aps.59.1562
    [11] 李农, 李建芬, 刘宇平. 不确定混沌系统的反同步与参数辨识. 物理学报, 2010, 59(9): 5954-5958. doi: 10.7498/aps.59.5954
    [12] 王明军, 王兴元. 基于一阶时滞混沌系统参数辨识的保密通信方案. 物理学报, 2009, 58(3): 1467-1472. doi: 10.7498/aps.58.1467
    [13] 温淑焕. Hénon混沌系统的自适应预测函数控制快速算法. 物理学报, 2009, 58(8): 5209-5213. doi: 10.7498/aps.58.5209
    [14] 温淑焕, 王哲, 刘福才. Hénon混沌系统的自适应广义预测控制快速算法. 物理学报, 2009, 58(6): 3753-3758. doi: 10.7498/aps.58.3753
    [15] 蒋 丹, 李松晶, 包 钢. 采用遗传算法对压力脉动过程中气泡模型参数的辨识. 物理学报, 2008, 57(8): 5072-5080. doi: 10.7498/aps.57.5072
    [16] 李建芬, 李 农, 蔡 理, 张 斌. 不确定Chua’s电路的参数辨识与自适应同步. 物理学报, 2008, 57(12): 7500-7505. doi: 10.7498/aps.57.7500
    [17] 李 农, 李建芬, 刘宇平, 马 健. 基于线性反馈控制的不确定混沌系统的参数辨识. 物理学报, 2008, 57(3): 1404-1408. doi: 10.7498/aps.57.1404
    [18] 彭海朋, 李丽香, 杨义先, 张小红, 高 洋. 一阶时滞混沌的参数辨识. 物理学报, 2007, 56(11): 6245-6249. doi: 10.7498/aps.56.6245
    [19] 王兴元, 武相军. 不确定Chen系统的参数辨识与自适应同步. 物理学报, 2006, 55(2): 605-609. doi: 10.7498/aps.55.605
    [20] 关新平, 彭海朋, 李丽香, 王益群. Lorenz混沌系统的参数辨识与控制. 物理学报, 2001, 50(1): 26-29. doi: 10.7498/aps.50.26
计量
  • 文章访问数:  4899
  • PDF下载量:  276
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-07
  • 修回日期:  2015-08-30
  • 刊出日期:  2015-12-05

/

返回文章
返回