搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于界面信号的扫频光学相干层析成像系统相位矫正方法

潘聪 郭立 沈毅 严雪过 丁志华 李鹏

引用本文:
Citation:

基于界面信号的扫频光学相干层析成像系统相位矫正方法

潘聪, 郭立, 沈毅, 严雪过, 丁志华, 李鹏

Phase correction method based on interfacial signal in swept source optical coherence tomography

Pan Cong, Guo Li, Shen Yi, Yan Xue-Guo, Ding Zhi-Hua, Li Peng
PDF
导出引用
  • 由于扫频光源的采集触发信号和采样时钟信号存在时间上的随机延时, 导致扫频光学相干层析成像(SS-OCT)系统干涉信号光谱的整体错移, 进而引发OCT空间域信号的相位跳变, 阻碍了基于相位信息的功能成像. 为了获得稳定的相位, 便于开展功能OCT的研究, 提出了一种基于界面信号的数字相位矫正方法. 对界面附近相邻A-line间同一深度的相位信号进行差分运算, 计算得到相位跳变的A-line位置与光谱错移量(以像素为单位), 然后在原始干涉信号上对齐光谱, 重新傅里叶逆变换, 得到矫正后的复信号. 该数字矫正算法不会引入额外的相位噪声, 可以实现OCT信噪比受限的相位探测. 通过对反射镜、荧光板和小鼠脑皮层血流的多普勒成像验证了该方法的可行性.
    There are intrinsic phase errors in swept source optical coherence tomography (SS-OCT), which severely influences the functional imaging. To overcome this difficulty, a numerical correction method is presented in this paper to correct the phase artifacts due to wavenumber shift among the spectral interferograms, resulting from the random delay variance between the sampling trigger and the clock of the swept source laser. This correction method is based on the linear relationship of phase difference to the depth of the sample and the wavenumber shift. The detailed procedure to eliminate the phase artifacts is as follows. Firstly, we figure out the complex OCT signals through inverse Fourier transform of the initial interferograms. Then we fit the upper surface of the sample with the intensity information of the B-scan by setting a floating threshold. After that the wavenumber shifts of each A-line are determined by two steps with the phase information of the sample surface: the relative wavenumber shifts between adjacent A-lines are first obtained according to the phase difference between the adjacent A-lines, the signal depth, and the linear relationship mentioned above; then we figure out the absolute wavenumber shifts between each A-line and the first A-line of the B-scan by an iteration algorithm. With the information about the wavenumber shift, we align the initial interferograms, and obtain the corrected complex signal through re-inverse Fourier transform of the aligned interferograms. This method introduces no extra noise, realizing phase measurement limited by the signal-to-noise ratio. It is noted that we take the average phase information of several axial pixels near the sample surface to diminish the noise influence when calculating the wavenumber shifts. Besides, this corrected algorithm acquires oversampling along the scanning direction to ensure the signal correlation between adjacent A-lines. The SS-OCT system in the paper is set up with a vertical cavity surface emitting laser with a center wavelength of 1297 nm. The system measurement range is 12 mm in lateral direction, the axial resolution is 17 m, and the lateral resolution is 24 m. And the feasibility of this method is verified by Doppler imaging of a mirror, an infra-red detection card and the cerebral cortex of a mouse.
      通信作者: 李鹏, Peng_Li@zju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61475143, 11404285, 61335003, 61327007, 61275196)、浙江省自然科学基金(批准号: LY14F050007)、国家高技术研究发展计划(批准号: 2015AA020515)、 浙江省科技厅公益性技术应用研究计划(批准号: 2015C33108)、中央高校基本科研业务费专项资金(批准号: 2014QNA5017)和教育部留学回国人员科研启动基金资助的课题.
      Corresponding author: Li Peng, Peng_Li@zju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475143, 11404285, 61335003, 61327007, 61275196), the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY14F050007), the National High Technology Research and Development Program of China (Grant No. 2015AA020515), the Zhejiang Province Science and Technology, China (Grant No. 2015C33108), the Fundamental Research Funds for the Central Universities, China (Grant No. 2014QNA5017), and the Scientific Research Foundation for Returned Scholars, Ministry of Education of China.
    [1]

    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A, Fujimoto J G 1991 Science 254 1178

    [2]

    Chinn S R, Swanson E A, Fujimoto J G 1997 Opt. Lett. 22 340

    [3]

    Ding Z H, Chen M H, Wang K, Meng J, Wu T, Shen L F 2009 Chin. J. Lasers 36 2469 (in Chinese) [丁志华, 陈明惠, 王凯, 孟婕, 吴彤, 沈龙飞 2009 中国激光 36 2469]

    [4]

    Choma M, Sarunic M, Yang C, Izatt J 2003 Opt. Express 11 2183

    [5]

    Chen M H, Ding Z H, Wang C, Song C L 2013 Acta Phys. Sin. 62 068703 (in Chinese) [陈明惠, 丁志华, 王成, 宋成利 2013 物理学报 62 068703]

    [6]

    Baumann B, Potsaid B, Kraus M F, Liu J J, Huang D, Hornegger J, Cable A E, Duker J S, Fujimoto J G 2011 Biomed. Opt. Express 2 1539

    [7]

    Braaf B, Vermeer K A, Sicam V A D P, van Zeeburg E, van Meurs J C, de Boer J F 2011 Opt. Express 19 20886

    [8]

    Huber R, Wojtkowski M, Fujimoto J G, Jiang J Y, Cable A E 2005 Opt. Express 13 10523

    [9]

    Liang C P, Wierwille J, Moreira T, Schwartzbauer G, Jafri M S, Tang C M, Chen Y 2011 Opt. Express 19 26283

    [10]

    Huang L M, Ding Z H, Hong W, Wang C 2012 Acta Phys. Sin. 61 023401 (in Chinese) [黄良敏, 丁志华, 洪威, 王川 2012 物理学报 61 023401]

    [11]

    Liu G Z, Zhou Z H, Qiu J, Wang X F, Liu G L, Wang R K 2013 Acta Phys. Sin. 62 158702 (in Chinese) [刘国忠, 周哲海, 邱钧, 王晓飞, 刘桂礼, 王瑞康 2013 物理学报 62 158702]

    [12]

    Park B H, Pierce M C, Cense B, Yun S H, Mujat M, Tearney G J, Bouma B E, de Boer J F 2005 Opt. Express 13 3931

    [13]

    Yazdanfar S, Yang C H, Sarunic M V, Izatt J A 2005 Opt. Express 13 410

    [14]

    Vakoc B J, Yun S H, de Boer J F, Tearney G J, Bouma B E 2005 Opt. Express 13 5483

    [15]

    Choi W, Potsaid B, Jayaraman V, Baumann B, Grulkowski I, Liu J J, Lu C D, Cable A E, Huang D, Duker J S, Fujimoto J G 2013 Opt. Lett. 38 338

    [16]

    Hong Y J, Makita S, Jaillon F, Ju M J, Min E J, Lee B H, Itoh M, Miura M, Yasuno Y 2012 Opt. Express 20 2740

    [17]

    Liu G J, Tan O, Gao S S, Pechauer A D, Lee B K, Lu C D, Fujimoto J G, Huang D 2015 Opt. Express 23 9824

  • [1]

    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A, Fujimoto J G 1991 Science 254 1178

    [2]

    Chinn S R, Swanson E A, Fujimoto J G 1997 Opt. Lett. 22 340

    [3]

    Ding Z H, Chen M H, Wang K, Meng J, Wu T, Shen L F 2009 Chin. J. Lasers 36 2469 (in Chinese) [丁志华, 陈明惠, 王凯, 孟婕, 吴彤, 沈龙飞 2009 中国激光 36 2469]

    [4]

    Choma M, Sarunic M, Yang C, Izatt J 2003 Opt. Express 11 2183

    [5]

    Chen M H, Ding Z H, Wang C, Song C L 2013 Acta Phys. Sin. 62 068703 (in Chinese) [陈明惠, 丁志华, 王成, 宋成利 2013 物理学报 62 068703]

    [6]

    Baumann B, Potsaid B, Kraus M F, Liu J J, Huang D, Hornegger J, Cable A E, Duker J S, Fujimoto J G 2011 Biomed. Opt. Express 2 1539

    [7]

    Braaf B, Vermeer K A, Sicam V A D P, van Zeeburg E, van Meurs J C, de Boer J F 2011 Opt. Express 19 20886

    [8]

    Huber R, Wojtkowski M, Fujimoto J G, Jiang J Y, Cable A E 2005 Opt. Express 13 10523

    [9]

    Liang C P, Wierwille J, Moreira T, Schwartzbauer G, Jafri M S, Tang C M, Chen Y 2011 Opt. Express 19 26283

    [10]

    Huang L M, Ding Z H, Hong W, Wang C 2012 Acta Phys. Sin. 61 023401 (in Chinese) [黄良敏, 丁志华, 洪威, 王川 2012 物理学报 61 023401]

    [11]

    Liu G Z, Zhou Z H, Qiu J, Wang X F, Liu G L, Wang R K 2013 Acta Phys. Sin. 62 158702 (in Chinese) [刘国忠, 周哲海, 邱钧, 王晓飞, 刘桂礼, 王瑞康 2013 物理学报 62 158702]

    [12]

    Park B H, Pierce M C, Cense B, Yun S H, Mujat M, Tearney G J, Bouma B E, de Boer J F 2005 Opt. Express 13 3931

    [13]

    Yazdanfar S, Yang C H, Sarunic M V, Izatt J A 2005 Opt. Express 13 410

    [14]

    Vakoc B J, Yun S H, de Boer J F, Tearney G J, Bouma B E 2005 Opt. Express 13 5483

    [15]

    Choi W, Potsaid B, Jayaraman V, Baumann B, Grulkowski I, Liu J J, Lu C D, Cable A E, Huang D, Duker J S, Fujimoto J G 2013 Opt. Lett. 38 338

    [16]

    Hong Y J, Makita S, Jaillon F, Ju M J, Min E J, Lee B H, Itoh M, Miura M, Yasuno Y 2012 Opt. Express 20 2740

    [17]

    Liu G J, Tan O, Gao S S, Pechauer A D, Lee B K, Lu C D, Fujimoto J G, Huang D 2015 Opt. Express 23 9824

  • [1] 陈纪辉, 王峰, 理玉龙, 张兴, 姚科, 关赞洋, 刘祥明. 针对微尺寸X射线源的非相干全息层析成像. 物理学报, 2023, 72(19): 195203. doi: 10.7498/aps.72.20230920
    [2] 赵荣, 周宾, 刘奇, 戴明露, 汪步斌, 王一红. 基于激光吸收光谱技术的在线层析成像算法. 物理学报, 2023, 72(5): 054206. doi: 10.7498/aps.72.20221935
    [3] 邢阳光, 彭吉龙, 段紫雯, 闫雷, 李林, 刘越. 太阳极紫外He II 30.4 nm谱线层析成像及其光谱数据反演. 物理学报, 2022, 71(15): 159501. doi: 10.7498/aps.71.20220084
    [4] 钱黄河, 王迪, 韩涛, 丁志华. 基于复数主从光学相干层析成像相位信息的离散界面快速定位方法. 物理学报, 2022, 71(21): 214202. doi: 10.7498/aps.71.20220444
    [5] 张敬娜, 张慧滔, 徐文峰, 朱溢佞, 邓世沃, 朱佩平. 微分相位衬度计算机层析成像的感兴趣区域重建方法. 物理学报, 2021, 70(11): 118702. doi: 10.7498/aps.70.20202192
    [6] 吴彤, 霍文麒, 黄蕴智, 王吉明, 顾晓蓉, 路元刚, 赫崇君, 刘友文. 用于内窥光学相干层析成像的小型化预标定Lissajous扫描光纤探头. 物理学报, 2021, 70(15): 150701. doi: 10.7498/aps.70.20210151
    [7] 杜军, 杨娜, 李峻灵, 曲彦臣, 李世明, 丁云鸿, 李锐. 相位调制激光多普勒频移测量方法的改进. 物理学报, 2018, 67(6): 064204. doi: 10.7498/aps.67.20172049
    [8] 吴彤, 孙帅帅, 王绪晖, 王吉明, 赫崇君, 顾晓蓉, 刘友文. 基于最优化线性波数光谱仪的谱域光学相干层析成像系统. 物理学报, 2018, 67(10): 104208. doi: 10.7498/aps.67.20172606
    [9] 王毅, 郭哲, 朱立达, 周红仙, 马振鹤. 基于谱域相位分辨光学相干层析的纳米级表面形貌成像. 物理学报, 2017, 66(15): 154202. doi: 10.7498/aps.66.154202
    [10] 樊金宇, 高峰, 孔文, 黎海文, 史国华. 多面转镜激光器扫频光学相干层析成像系统的全光谱重采样方法. 物理学报, 2017, 66(11): 114204. doi: 10.7498/aps.66.114204
    [11] 马振鹤, 窦世丹, 马毓姝, 刘健, 赵玉倩, 刘江红, 吕江涛, 王毅. 基于光学相干层析成像的早期鸡胚心脏径向应变测量. 物理学报, 2016, 65(23): 235202. doi: 10.7498/aps.65.235202
    [12] 上官紫微, 沈毅, 李鹏, 丁志华. 扫频光学相干层析成像系统的波数校正与相位测量研究. 物理学报, 2016, 65(3): 034201. doi: 10.7498/aps.65.034201
    [13] 唐弢, 赵晨, 陈志彦, 李鹏, 丁志华. 超高分辨光学相干层析成像技术与材料检测应用. 物理学报, 2015, 64(17): 174201. doi: 10.7498/aps.64.174201
    [14] 赵晨, 陈志彦, 丁志华, 李鹏, 沈毅, 倪秧. 线照明并行谱域光学相干层析成像系统与缺陷检测应用研究. 物理学报, 2014, 63(19): 194201. doi: 10.7498/aps.63.194201
    [15] 杜军, 赵卫疆, 曲彦臣, 陈振雷, 耿利杰. 基于相位调制器与Fabry-Perot干涉仪的激光多普勒频移测量方法. 物理学报, 2013, 62(18): 184206. doi: 10.7498/aps.62.184206
    [16] 刘国忠, 周哲海, 邱钧, 王晓飞, 刘桂礼, 王瑞康. 幅值和相位配准技术及其在光学相干层析血流成像中的应用. 物理学报, 2013, 62(15): 158702. doi: 10.7498/aps.62.158702
    [17] 黄良敏, 丁志华, 洪威, 王川. 相关多普勒光学层析成像. 物理学报, 2012, 61(2): 023401. doi: 10.7498/aps.61.023401
    [18] 杨亚良, 丁志华, 王凯, 吴凌, 吴兰. 全场光学相干层析成像系统的研制. 物理学报, 2009, 58(3): 1773-1778. doi: 10.7498/aps.58.1773
    [19] 陈建文, 高鸿奕, 朱化凤, 谢红兰, 李儒新, 徐至展. 中子相衬层析成像方法. 物理学报, 2005, 54(3): 1132-1135. doi: 10.7498/aps.54.1132
    [20] 向际鹰, 吴 震, 曾绍群, 骆清铭, 张 平, 黄德修. 弱相干扫描层析成像系统的三维传递函数分析. 物理学报, 1999, 48(10): 1831-1838. doi: 10.7498/aps.48.1831
计量
  • 文章访问数:  5190
  • PDF下载量:  244
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-09
  • 修回日期:  2015-09-21
  • 刊出日期:  2016-01-05

/

返回文章
返回