搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢离子辐照纯钒中形成的位错环

崔丽娟 高进 杜玉峰 张高伟 张磊 龙毅 杨善武 詹倩 万发荣

引用本文:
Citation:

氢离子辐照纯钒中形成的位错环

崔丽娟, 高进, 杜玉峰, 张高伟, 张磊, 龙毅, 杨善武, 詹倩, 万发荣

Characterization of dislocation loops in hydrogen-ion irradiated vanadium

Cui Li-Juan, Gao Jin, Du Yu-Feng, Zhang Gao-Wei, Zhang Lei, Long Yi, Yang Shan-Wu, Zhan Qian, Wan Fa-Rong
PDF
导出引用
  • 钒合金作为聚变堆候选材料, 其辐照损伤行为一直是关注的重点. 研究辐照时形成的位错环的性质, 其意义在于揭示纯钒中辐照空洞的长大机理. 这种机理表现为不同类型位错环对点缺陷吸收的偏压不同, 从而影响金属的辐照肿胀. 本文利用加速器对纯钒薄膜样品进行氢离子辐照, 然后, 利用透射电镜的inside-outside方法分析氢离子辐照所形成的位错环的类型. 结果表明, 在氢离子辐照纯钒中没有发现柏氏矢量b=110的位错环, 只有柏氏矢量b=1/2111和b=110的位错环, 这两种位错环的惯性面处于{110}-{112}之间. 能确定性质的位错环全部为间隙型位错环, 未发现空位型位错环.
    Vanadium alloys are considered as the candidate materials for structure application in fusion reactors because of their low radiation-induced activation, high resistance to radiation damage, high thermal conduction, and low thermal expansion coefficient. Before these materials, which will be exposed to high-flux hydrogen and helium isotopes, may be safely used in fusion device much more data based on irradiation damage are required. The study of dislocation loops in vanadium is designed to indicate the mechanism of void growing under irradiation. The mechanism is that different types of dislocation loops have different bias which represent their abilities to absorb point defects. It is possible to explain the irradiation swelling performance in the material with the bias of loops. The thin disks samples used in this experiment are made of pure vanadium and vanadium alloy (V-4Cr-4Ti) by twin-jet electro-polishing. Electrolyte of H2SO4-CH3OH (1 : 6 by volume) at -20 ℃ is used in a current of 80~120 mA. To get a clear view of dislocation loops, the SRIM code is used to simulate the implantation of hydrogen ions into vanadium. The ion irradiation is carried out to a dose of 51016H+/cm2, at an energy of 30 keV. Microstructure observations are performed on a Tecnai G2 F20 (transmission electron microscope, TEM) at an accelerating voltage of 200 kV. The Burger's vectors and nature of the dislocation loops formed in pure vanadium by hydrogen implantation are confirmed by TEM. This experiment has focused on as many as 76 dislocation loops, lots of images are taken under different diffraction conditions from the same areas of interest. Results show that most of the dislocation loops have a Burger's vectors of 1/2111 (90%), and a few of 110. No loops with b= 100 loops can be found in this study. The nature of dislocation loops is determined by the inside-outside method. The number of the dislocation loops that can make sure of their nature is 29, and all of them are conformed to be interstitial type, their habit planes are from {110} to {112}. No vacancy type loops are found. The density and average size of dislocation loops in vanadium and vanadium alloy are also analysed. Compared with the pure vanadium, the loops in vanadium alloy of V-4Cr-Ti are formed in a smaller size and higher number density. As a future work the difference of the loops nature between pure vanadium and vanadium-based alloys should be investigated to illustrate their behaviour of irradiation swelling.
      通信作者: 万发荣, wanfr@mater.ustb.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51071021, 51471026)和国家磁约束核聚变发展专项资助项目(批准号: 2014GB120000)资助的课题.
      Corresponding author: Wan Fa-Rong, wanfr@mater.ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51071021, 51471026), and the National Magnetic Confinement Fusion Program of China (Grant No. 2014GB120000).
    [1]

    Ivanov L I, Ivanov V V, Lazorenko V M, Platovet U M, Tovtin V I 1992 J. Nucl. Mater. 191-194 928

    [2]

    Fukumoto K, Kuroyanagi Y, Kuroiwa H, Narui M, Matsui H 2011 J. Nucl. Mater. 417 295

    [3]

    Nishizawa T, Sasaki H, Ohnuki S, Takahashi H, Sshibayama T, Kayano H 1996 J. Nucl. Mater. 239 132

    [4]

    Yao Z, Hernndez-Mayoral M, Jenkins M L, Kirc M A 2008 Phil. Mag. 88 2851

    [5]

    Yao Z, Jenkins M L, Jenkins M L, Kirc M A 2008 Phil. Mag. 88 2881

    [6]

    Huang Y N, Wan F R, Jiao Z J 2011 Acta Phys. Sin. 60 036802 (in Chinese) [黄依娜, 万发荣, 焦治杰 2011 物理学报 60 036802]

    [7]

    Wan F R, Zhang Q, Long Y, Yang S W, Zhang G W, Du Y F, Jiao Z J, Ohuki S 2014 J. Nucl. Mater. 455 253

    [8]

    Zhang C X, Lu E Y, Jin S X, Zhang P, Li Y H, Cao X Z, Wang B Y 2014 The Twelfth National Conference of Positron Annihilation Spectrum Yantai City, Shandong Province, 2014.07.09-2014.07.13 pp68-70 (in Chinese) [张春雄, 卢二阳, 靳硕学, 张鹏, 李玉红, 曹兴忠, 王宝义2014 第十二届全国正电子谱学会议论文集 山东省烟台市 2014.07.09-2014.07.13 第68-70页]

    [9]

    Yu G, Ma Y, Cai J, Lu D G 2012 Chin. Phys. B 21 036101

    [10]

    Jin S X 2013 Ph.D. Dissertation (Wuhan: Wuhan University) (in Chinese) [靳硕学 2013 博士学位论文 (武汉: 武汉大学)]

    [11]

    Rice P M, Zinkle S J 1998 J. Nucl. Mater. 258-263 1414

    [12]

    Nagasaka N, Muroga T, Watanabe H, Yamasaki K, Heo N, Shinozaki K, Narui M 2005 Mate. Trans. 46 498

    [13]

    Kawanishi H, Ishino S, Kuramoto E 1986 J. Nucl. Mater. 141-143 899

    [14]

    Kawanishi H, Ishino S 1988 J. Nucl. Mater. 155-157 940

    [15]

    Matsui H 1994 Plas. Fus. Res. 70 807

    [16]

    Leguey T, Pareja R, Hodgson E R 1996 J. Nucl. Mater. 231 191

  • [1]

    Ivanov L I, Ivanov V V, Lazorenko V M, Platovet U M, Tovtin V I 1992 J. Nucl. Mater. 191-194 928

    [2]

    Fukumoto K, Kuroyanagi Y, Kuroiwa H, Narui M, Matsui H 2011 J. Nucl. Mater. 417 295

    [3]

    Nishizawa T, Sasaki H, Ohnuki S, Takahashi H, Sshibayama T, Kayano H 1996 J. Nucl. Mater. 239 132

    [4]

    Yao Z, Hernndez-Mayoral M, Jenkins M L, Kirc M A 2008 Phil. Mag. 88 2851

    [5]

    Yao Z, Jenkins M L, Jenkins M L, Kirc M A 2008 Phil. Mag. 88 2881

    [6]

    Huang Y N, Wan F R, Jiao Z J 2011 Acta Phys. Sin. 60 036802 (in Chinese) [黄依娜, 万发荣, 焦治杰 2011 物理学报 60 036802]

    [7]

    Wan F R, Zhang Q, Long Y, Yang S W, Zhang G W, Du Y F, Jiao Z J, Ohuki S 2014 J. Nucl. Mater. 455 253

    [8]

    Zhang C X, Lu E Y, Jin S X, Zhang P, Li Y H, Cao X Z, Wang B Y 2014 The Twelfth National Conference of Positron Annihilation Spectrum Yantai City, Shandong Province, 2014.07.09-2014.07.13 pp68-70 (in Chinese) [张春雄, 卢二阳, 靳硕学, 张鹏, 李玉红, 曹兴忠, 王宝义2014 第十二届全国正电子谱学会议论文集 山东省烟台市 2014.07.09-2014.07.13 第68-70页]

    [9]

    Yu G, Ma Y, Cai J, Lu D G 2012 Chin. Phys. B 21 036101

    [10]

    Jin S X 2013 Ph.D. Dissertation (Wuhan: Wuhan University) (in Chinese) [靳硕学 2013 博士学位论文 (武汉: 武汉大学)]

    [11]

    Rice P M, Zinkle S J 1998 J. Nucl. Mater. 258-263 1414

    [12]

    Nagasaka N, Muroga T, Watanabe H, Yamasaki K, Heo N, Shinozaki K, Narui M 2005 Mate. Trans. 46 498

    [13]

    Kawanishi H, Ishino S, Kuramoto E 1986 J. Nucl. Mater. 141-143 899

    [14]

    Kawanishi H, Ishino S 1988 J. Nucl. Mater. 155-157 940

    [15]

    Matsui H 1994 Plas. Fus. Res. 70 807

    [16]

    Leguey T, Pareja R, Hodgson E R 1996 J. Nucl. Mater. 231 191

  • [1] 秦梦飞, 王英敏, 张红玉, 孙继忠. 〈100〉间隙型位错环在纯钨及含氦杂质钨(010)表面下运动行为的分子动力学模拟. 物理学报, 2023, 72(24): 245204. doi: 10.7498/aps.72.20230651
    [2] 徐驰, 万发荣. 聚变材料钨辐照后退火形成的位错环特性及inside-outside衬度分析. 物理学报, 2023, 72(5): 056801. doi: 10.7498/aps.72.20222124
    [3] 华颖鑫, 陈小辉, 李俊, 郝龙, 孙毅, 王玉峰, 耿华运. 钒的冲击熔化原位X射线衍射测量研究. 物理学报, 2022, 71(7): 076201. doi: 10.7498/aps.71.20212065
    [4] 李然然, 张一帆, 殷玉鹏, 渡边英雄, 韩文妥, 易晓鸥, 刘平平, 张高伟, 詹倩, 万发荣. 注氢纯铝中间隙型位错环一维迁移现象的原位观察. 物理学报, 2022, 71(1): 016102. doi: 10.7498/aps.71.20211229
    [5] 李然然, 殷玉鹏, 渡边英雄, 易晓鸥, 韩文妥, 刘平平, 詹倩, 万发荣. 注氢铁基二元合金中辐照位错环演化及退火温度影响研究. 物理学报, 2022, 71(13): 136101. doi: 10.7498/aps.71.20220137
    [6] 王瑾, 贺新福, 曹晗, 贾丽霞, 豆艳坤, 杨文. 不同温度下bcc-Fe中螺位错滑移及其与½[${{11}}\bar {{1}}$]位错环相互作用行为. 物理学报, 2021, 70(6): 068701. doi: 10.7498/aps.70.20201659
    [7] 李然然, 张一帆, 殷玉鹏, 渡边英雄, 韩文妥, 易晓鸥, 刘平平, 张高伟, 詹倩, 万发荣. 注氢纯铝中间隙型位错环一维迁移现象的原位观察. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211229
    [8] 梁晋洁, 高宁, 李玉红. 体心立方Fe中${ \langle 100 \rangle}$位错环对微裂纹扩展影响的分子动力学研究. 物理学报, 2020, 69(11): 116102. doi: 10.7498/aps.69.20200317
    [9] 梁晋洁, 高宁, 李玉红. 表面效应对铁${\left\langle 100 \right\rangle} $间隙型位错环的影响. 物理学报, 2020, 69(3): 036101. doi: 10.7498/aps.69.20191379
    [10] 蒋元祺. 难熔金属钒熔化行为的局域原子结构模拟与分析. 物理学报, 2020, 69(20): 203601. doi: 10.7498/aps.69.20200185
    [11] 林怀俊, 朱云峰, 刘雅娜, 李李泉, 朱敏. 非晶态合金与氢相互作用的研究进展. 物理学报, 2017, 66(17): 176105. doi: 10.7498/aps.66.176105
    [12] 俞宇颖, 谭叶, 戴诚达, 李雪梅, 李英华, 谭 华. 钒的高压声速测量. 物理学报, 2014, 63(2): 026202. doi: 10.7498/aps.63.026202
    [13] 姜少宁, 万发荣, 龙毅, 刘传歆, 詹倩, 大貫惣明. 氦、氘对纯铁辐照缺陷的影响. 物理学报, 2013, 62(16): 166801. doi: 10.7498/aps.62.166801
    [14] 郭龙婷, 孙继忠, 黄艳, 刘升光, 王德真. 低能氢粒子沿不同角度轰击钨(001)表面的反射概率及入射深度分布的分子动力学研究. 物理学报, 2013, 62(22): 227901. doi: 10.7498/aps.62.227901
    [15] 黄依娜, 万发荣, 焦治杰. 利用透射电镜衬度像变化判定位错环类型及注氢纯铁中形成的位错环分析. 物理学报, 2011, 60(3): 036802. doi: 10.7498/aps.60.036802
    [16] 毕鹏, 刘元琼, 唐永建, 杨向东, 雷海乐. 液氢平面低温冷冻靶的红外吸收谱. 物理学报, 2010, 59(11): 7531-7534. doi: 10.7498/aps.59.7531
    [17] 卢果, 方步青, 张广财, 许爱国. 有限温度下位错环的脱体现象. 物理学报, 2009, 58(11): 7934-7946. doi: 10.7498/aps.58.7934
    [18] 杨其利, 张广财, 许爱国, 赵艳红, 李英骏. 冲击条件下含纳米空洞的单晶铜的塌缩. 物理学报, 2008, 57(2): 940-946. doi: 10.7498/aps.57.940
    [19] 方 方, 郑时有, 周广有, 陈国荣, 孙大林. 氢致LaMg2Ni合金薄膜的光电性能变化. 物理学报, 2008, 57(6): 3813-3817. doi: 10.7498/aps.57.3813
    [20] 徐 进, 杨德仁, 储 佳, 马向阳, 阙端麟. 微氮直拉硅单晶中氧化诱生层错透射电镜研究. 物理学报, 2004, 53(2): 550-554. doi: 10.7498/aps.53.550
计量
  • 文章访问数:  6037
  • PDF下载量:  269
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-02
  • 修回日期:  2015-12-09
  • 刊出日期:  2016-03-05

/

返回文章
返回