搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体填充金属光子晶体Cherenkov辐射源模拟研究

傅涛 欧阳征标

引用本文:
Citation:

等离子体填充金属光子晶体Cherenkov辐射源模拟研究

傅涛, 欧阳征标

Simulation of cherenkov radiation oscillation in a plasma-filled metallic photonic crystal

Fu Tao, Ouyang Zheng-Biao
PDF
导出引用
  • 等离子体填充能够明显提高真空电子器件的效率和功率, 研究等离子体填充器件具有重要的科学价值. 本文基于对等离子体填充金属光子晶体慢波结构色散特性的分析, 利用粒子模拟方法展示了等离子体填充慢波结构中的注波互作用过程. 重点研究了慢波结构中场分布特性、等离子体密度和外部工作条件对频率及输出功率的影响. 研究发现, 填充一定密度等离子体后, 慢波结构内纵向和横向电场强度明显增大, 注波互作用增强, 输出频率受等离子体影响不大. 金属光子晶体结构具有的频率选择特性使器件工作于TM01模态. 阴极电压增加使输出功率增大, 频率略有增加. 引导磁场增加使输出功率先增大后减小, 而频率基本不受影响. 等离子体填充后器件的输出功率上升, 当增加压强至100 mTorr(1 mTorr=0.133 Pa) 时, 输出功率提高约20%, 但只有适当密度下才有较好的角向场分布. 通过理论与模拟相结合, 发现填充一定密度的等离子体能够提高器件输出功率和效率, 为发展新型高功率毫米波振荡辐射源奠定了理论和仿真基础.
    Plasma filling can significantly improve the efficiency and power of a vacuum device. In this paper, we first analyze the dispersion properties of a plasma-filled metal-photonic-crystal slow-wave structure (SWS), and then investigate the interaction procedure between a relativistic electron beam and the Cherenkov radiation in the plasma-filled metallic-photonic-crystal by the particle in cell method. We pay our attention to the influences of plasma density, cathode voltage, and guiding magnetic field on output frequency and power. The results show that the electric field strength in the SWS increases obviously at a fixed plasma density of 50 mTorr (1m mTorr=0.133 Pa). The device works at a stable single TM01 mode due to the good mode properties of the metal photonic crystal even if plasma is filled in it. The maximum value of Ez field along the z axis of the device increases from 46.34 MV/m without plasma to 79 MV/m with plasma. The value along the x axis increases from 136 MV/m without plasma to 185 MV/m with plasma. The working frequency (35.5 GHz) of the device, obtained from simulation, is consistent with the theoretical estimation (35.4 GHz). The power increases with the cathode voltage between 500 kV and 600 kV while the frequency increases only a little. When the magnetic field B increases, the output power first increases and then decreases. But the frequency is not affected due to the dispersion property. The output power of the device increases 20% when the air pressure increases from 0 to 100 mTorr. However, there is a pretty distribution of the field Ez along the angular direction only in an appropriate plasma density around 50 mTorr. According to the theory and simulation, the output power and efficiency can be improved in an appropriate range of plasma density. These results provide a basis for developing the plasma-filled vacuum devices.
      通信作者: 欧阳征标, zbouyang@szu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61275043)、国家自然科学基金青年科学基金(批准号: 61501302, 61307048)和深圳市科信局(批准号: CXB201105050064A)资助的课题.
      Corresponding author: Ouyang Zheng-Biao, zbouyang@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61275043), the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 61501302, 61307048), and Shenzhen Bureau, China (Grant No. CXB201105050064A).
    [1]

    Chen F F 1974 Introduction to Plasma Physics (Los Angeles: Plenum Press) p101

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [4]

    Sakai O, Sakaguchi T, Tachibana K 2005 Appl. Phys. Lett. 87 241505

    [5]

    Sakaguchi T, Sakai O, Tachibana K 2007 J. Appl. Phys. 101 073305

    [6]

    Sakai O, Tachibana K 2007 IEEE Trans. Plasma Sci. 35 1267

    [7]

    Qi L M, Yang Z Q, Lan F, Gao X, Li D Z 2010 Chin. Phys. B 19 034210

    [8]

    Qi L M, Yang Z Q, Lan F, Gao X, Shi Z J, Liang Z 2010 Acta Phys. Sin. 59 351 (in Chinese) [亓丽梅, 杨梓强, 兰峰, 高喜, 史宗君, 梁正 2010 物理学报 59 351]

    [9]

    Ma L, Zhang H F, Liu S B 2008 Acta Phys. Sin. 57 5089 (in Chinese) [马力, 章海锋, 刘少斌 2008 物理学报 57 5089]

    [10]

    Lo J, Sokoloff J, Callegari T, Boeuf J P 2010 Appl. Phys. Lett. 96 251501

    [11]

    Fu T, Yang Z Q, Tang X P, Shi Z J, Lan F 2014 Phys. Plasma 21 013106

    [12]

    Minami K, Kobayashi S, Hayatsu Y, Sato T 2002 IEEE Trans. Plasma Sci. 30 1196

    [13]

    Lou W R, Carmel Y, Antonsen T M, Destler J W W, Granatstein L V 1991 Phys. Rev. Lett. 67 2481

    [14]

    Liu W X, Yang Z Q, Liang Z 2004 Int. J. Infrared Milli. 25 1053

    [15]

    Wang H Y, Yang Z Q, Zhao L X, Liang Z 2005 IEEE Trans. Plasma Sci. 33 111

    [16]

    Wang H Y, Yang Z Q, Liang Z 2005 Nucl. Instrum. Meth. Phys. Res. A 539 37

    [17]

    Smirnova E I, Kesar A S, Mastovsky I, Shapiro M A, Temkin R J 2005 Phys. Rev. Lett. 95 074801

    [18]

    Jang K H, Jeon S G, Kim J, Won J H, So J K, Bak S H, Srivastava A, Jung S S, Park G S 2008 Appl. Phys. Lett. 93 211104

    [19]

    Nashed A I, Chaudhuri S K, Afavi-Naeini S 2012 IEEE Trans. Terahertz Sci. Technol. 2 642

    [20]

    Nanni E A, Lewis S M, Shapiro M A, Griffin R G, Temkin R J 2013 Phys. Rev. Lett. 111 235101

    [21]

    Fu T, Yang Z Q, Lan F, Shi Z J 2014 High Power Laser and Particle Beams 26 043001 (in Chinese) [傅涛, 杨梓强, 兰峰, 史宗君 2014 强激光与粒子束 26 043001]

    [22]

    Fu T, Yang Z Q, Ouyang Z B 2015 Acta Chin. Sin. 64 174205 (in Chinese) [傅涛, 杨梓强, 欧阳征标 2015 物理学报 64 174205]

    [23]

    Goebel D M, Adler E A, Ponti E S, Feicht J R, Eisenhart R L, Lemke R W 1999 IEEE Trans. Plasma Sci. 27 800

    [24]

    Miller S M, Antonsen T M, Levush B, Alexander N V 1996 IEEE Trans. Plasma Sci. 24 859

    [25]

    Gao X, Yang Z Q, Qi L M, Lan F, Shi Z J, Li D Z, Liang Z 2009 Chin. Phys. B 18 2452

  • [1]

    Chen F F 1974 Introduction to Plasma Physics (Los Angeles: Plenum Press) p101

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [4]

    Sakai O, Sakaguchi T, Tachibana K 2005 Appl. Phys. Lett. 87 241505

    [5]

    Sakaguchi T, Sakai O, Tachibana K 2007 J. Appl. Phys. 101 073305

    [6]

    Sakai O, Tachibana K 2007 IEEE Trans. Plasma Sci. 35 1267

    [7]

    Qi L M, Yang Z Q, Lan F, Gao X, Li D Z 2010 Chin. Phys. B 19 034210

    [8]

    Qi L M, Yang Z Q, Lan F, Gao X, Shi Z J, Liang Z 2010 Acta Phys. Sin. 59 351 (in Chinese) [亓丽梅, 杨梓强, 兰峰, 高喜, 史宗君, 梁正 2010 物理学报 59 351]

    [9]

    Ma L, Zhang H F, Liu S B 2008 Acta Phys. Sin. 57 5089 (in Chinese) [马力, 章海锋, 刘少斌 2008 物理学报 57 5089]

    [10]

    Lo J, Sokoloff J, Callegari T, Boeuf J P 2010 Appl. Phys. Lett. 96 251501

    [11]

    Fu T, Yang Z Q, Tang X P, Shi Z J, Lan F 2014 Phys. Plasma 21 013106

    [12]

    Minami K, Kobayashi S, Hayatsu Y, Sato T 2002 IEEE Trans. Plasma Sci. 30 1196

    [13]

    Lou W R, Carmel Y, Antonsen T M, Destler J W W, Granatstein L V 1991 Phys. Rev. Lett. 67 2481

    [14]

    Liu W X, Yang Z Q, Liang Z 2004 Int. J. Infrared Milli. 25 1053

    [15]

    Wang H Y, Yang Z Q, Zhao L X, Liang Z 2005 IEEE Trans. Plasma Sci. 33 111

    [16]

    Wang H Y, Yang Z Q, Liang Z 2005 Nucl. Instrum. Meth. Phys. Res. A 539 37

    [17]

    Smirnova E I, Kesar A S, Mastovsky I, Shapiro M A, Temkin R J 2005 Phys. Rev. Lett. 95 074801

    [18]

    Jang K H, Jeon S G, Kim J, Won J H, So J K, Bak S H, Srivastava A, Jung S S, Park G S 2008 Appl. Phys. Lett. 93 211104

    [19]

    Nashed A I, Chaudhuri S K, Afavi-Naeini S 2012 IEEE Trans. Terahertz Sci. Technol. 2 642

    [20]

    Nanni E A, Lewis S M, Shapiro M A, Griffin R G, Temkin R J 2013 Phys. Rev. Lett. 111 235101

    [21]

    Fu T, Yang Z Q, Lan F, Shi Z J 2014 High Power Laser and Particle Beams 26 043001 (in Chinese) [傅涛, 杨梓强, 兰峰, 史宗君 2014 强激光与粒子束 26 043001]

    [22]

    Fu T, Yang Z Q, Ouyang Z B 2015 Acta Chin. Sin. 64 174205 (in Chinese) [傅涛, 杨梓强, 欧阳征标 2015 物理学报 64 174205]

    [23]

    Goebel D M, Adler E A, Ponti E S, Feicht J R, Eisenhart R L, Lemke R W 1999 IEEE Trans. Plasma Sci. 27 800

    [24]

    Miller S M, Antonsen T M, Levush B, Alexander N V 1996 IEEE Trans. Plasma Sci. 24 859

    [25]

    Gao X, Yang Z Q, Qi L M, Lan F, Shi Z J, Li D Z, Liang Z 2009 Chin. Phys. B 18 2452

  • [1] 骆新耀, 薛宇哲, 徐彻, 杜创洲, 刘庆想. 基于T形四周期谐振慢波结构的X波段高功率微波产生技术的理论与仿真. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231921
    [2] 林月钗, 刘仿, 黄翊东. 基于超构材料的Cherenkov辐射. 物理学报, 2020, 69(15): 154103. doi: 10.7498/aps.69.20200260
    [3] 王光强, 王建国, 李爽, 王雪锋, 陆希成, 宋志敏. 0.34 THz大功率过模表面波振荡器研究. 物理学报, 2015, 64(5): 050703. doi: 10.7498/aps.64.050703
    [4] 赵文娟, 陈再高, 郭伟杰. 慢波结构爆炸发射对高功率太赫兹表面波振荡器的影响. 物理学报, 2015, 64(15): 150702. doi: 10.7498/aps.64.150702
    [5] 傅涛, 杨梓强, 欧阳征标. 等离子体填充金属光子晶体慢波结构色散特性研究. 物理学报, 2015, 64(17): 174205. doi: 10.7498/aps.64.174205
    [6] 谢文球, 王自成, 罗积润, 刘青伦. 正弦波导高频特性分析. 物理学报, 2014, 63(4): 044101. doi: 10.7498/aps.63.044101
    [7] 王冬, 徐莎, 曹延伟, 秦奋. 光子晶体高功率微波模式转换器设计. 物理学报, 2014, 63(1): 018401. doi: 10.7498/aps.63.018401
    [8] 王兵, 文光俊, 王文祥. 同轴交错圆盘加载波导慢波结构高频特性的研究. 物理学报, 2014, 63(22): 224101. doi: 10.7498/aps.63.224101
    [9] 韦朴, 周明干, 朱露, 张劲, 王雪峰, 吕东亚, 陈宁, 杨明华, 孙小菡. 螺旋线慢波结构夹持性能测试方法研究. 物理学报, 2013, 62(9): 094401. doi: 10.7498/aps.62.094401
    [10] 李爽, 王建国, 童长江, 王光强, 陆希成, 王雪锋. 大功率0.34 THz辐射源中慢波结构的优化设计. 物理学报, 2013, 62(12): 120703. doi: 10.7498/aps.62.120703
    [11] 刘洋, 徐进, 许雄, 沈飞, 魏彦玉, 黄民智, 唐涛, 王文祥, 宫玉彬. V形曲折矩形槽慢波结构的研究. 物理学报, 2012, 61(15): 154208. doi: 10.7498/aps.61.154208
    [12] 易红霞, 肖刘, 刘濮鲲, 郝保良, 李飞, 李国超. 基于电子注可回收能力的空间行波管慢波结构的优化设计. 物理学报, 2011, 60(6): 068403. doi: 10.7498/aps.60.068403
    [13] 黎燕林, 薛谦忠, 杜朝海, 郝保良. 修正的频域有限差分法在二维金属光子晶体分析中的应用. 物理学报, 2010, 59(4): 2556-2563. doi: 10.7498/aps.59.2556
    [14] 高喜, 杨梓强, 侯钧, 亓丽梅, 兰峰, 史宗君, 李大治, 梁正. 具有变态光子带隙结构的相对论Cherenkov辐射源的研究. 物理学报, 2009, 58(2): 1105-1109. doi: 10.7498/aps.58.1105
    [15] 韩勇, 刘燕文, 丁耀根, 刘濮鲲. 螺旋线慢波结构中界面热阻率的研究. 物理学报, 2009, 58(3): 1806-1811. doi: 10.7498/aps.58.1806
    [16] 路志刚, 魏彦玉, 宫玉彬, 吴周淼, 王文祥. 具有任意槽的矩形波导栅慢波结构高频特性的研究. 物理学报, 2007, 56(6): 3318-3323. doi: 10.7498/aps.56.3318
    [17] 路志刚, 宫玉彬, 魏彦玉, 王文祥. 二维金属光子晶体的带结构研究. 物理学报, 2006, 55(7): 3590-3596. doi: 10.7498/aps.55.3590
    [18] 张 军, 钟辉煌. 高功率O型慢波器件的纵向模式选择研究. 物理学报, 2005, 54(1): 206-210. doi: 10.7498/aps.54.206
    [19] 岳玲娜, 王文祥, 魏彦玉, 宫玉彬. 同轴任意槽形周期圆波导慢波结构色散特性的研究. 物理学报, 2005, 54(9): 4223-4228. doi: 10.7498/aps.54.4223
    [20] 张 勇, 莫元龙, 徐锐敏, 延 波, 谢小强. 等离子体填充盘荷波导高频特性分析. 物理学报, 2005, 54(11): 5239-5245. doi: 10.7498/aps.54.5239
计量
  • 文章访问数:  4760
  • PDF下载量:  147
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-10
  • 修回日期:  2016-01-08
  • 刊出日期:  2016-04-05

/

返回文章
返回