搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于谐振腔增强型石墨烯光电探测器的设计及 性能分析

梁振江 刘海霞 牛燕雄 尹贻恒

引用本文:
Citation:

基于谐振腔增强型石墨烯光电探测器的设计及 性能分析

梁振江, 刘海霞, 牛燕雄, 尹贻恒

Design and performance analysis of microcavity-enhanced graphene photodetector

Liang Zhen-Jiang, Liu Hai-Xia, Niu Yan-Xiong, Yin Yi-heng
PDF
导出引用
  • 提出了一种具有超薄有源层的谐振腔增强型石墨烯光电探测器的设计方法, 利用谐振腔结构可以将光场限制在腔内, 有效增强探测器的吸收. 通过研究谐振腔内光场谐振条件及谐振模式下探测器响应度增强的机理, 建立了驻波效应下谐振腔增强型石墨烯光电探测器光吸收模型, 仿真分析谐振腔反射镜反射率、谐振腔腔长对于腔内光场增强器件性能的影响. 理论分析表明, 谐振腔增强型石墨烯光电探测器在850 nm处响应度可达0.5 A/W, 相比无腔状态下提高了32倍; 半高全宽为10 nm. 采用谐振腔结构能够提高石墨烯光电探测器件的光电响应, 为解决光电探测器响应度与响应速度之间的相互制约关系提供了途径.
    There is an increasing interest in grapheme photodetector for its applications, because graphene has rich optical and electronic properties, including zero band gap, high mobility and special optical absorption properties. A design of microcavity-enhanced photodetector based on ultra-thin graphene is proposed in this paper: detector absorption can be effectively improved by confining the light field in the microcavity. Through studying the light field resonant condition in the microcavity and enhanced mechanism of detector responsivity under resonant mode, the light absorption model of a microcavity-enhanced graphene photodetector under standing wave effect is established; it is analyzed that the influences of microcavity mirror reflectivity and length on detector performance are increased by light field. Further the optimal structure parameters and performance evaluations of microcavity-enhanced graphene photodetector at different incident wavelengths are demonstrated. Theoretical analysis shows that under the standing wave effect the effective absorption coefficient of monolayer graphene at the antinode is one multiple enlargement compared with no cavity; the microcavity length and topbottom mirror reflectivity directly affect the optical total phase during light folding back at one time in the microcavity, and the shift of the total optical phase changes the full width at half maximum (FWHM) of the responsivity of the microcavity-enhanced graphene photodetector. Through coordinating the relations among the microcavity length and reflectivities of two mirrors and the incident wavelength, it can be realized that the photodetector has a good characteristic of wavelength selectivity. At a nominal operating wavelength of 850 nm, the presented microcavity-enhanced graphene photodetector can reach a responsivity of 0.5 A/W, 32-fold increase compared with monolayer graphene photodetector with no cavity and FWHM can reach 10 nm, indicating that the designed photodetector has a high responsivity and a good charactoristic of narrowband. As for the application in the practical engineering, through adopting bias on the two sides of graphene in the cavity to speed up the migration velocity of the photon-generated carrier, more photon-generated carriers are produced to increase the photodetector responsivity. However, the increased level of photodetector responsivity will be impeded acctually on account of the high contact resistance between graphene and electrode, and the measured value will not equal the theoretical value, so the quantitative analysis on the value of the bias should be carried out. Through combining the microcavity with graphene the incident light can be confined to reflect multiple times between two mirrors in the microcavity to improve the graphene absorption, and then make the microcavity-enhanced graphene photodetector responsivity improved. Our approach can be used to improve the optical response of graphene photodetector, and provides a way to solve the trade-off between photodetector responsivity and response speed.
      通信作者: 刘海霞, liuhx08@buaa.edu.cn
    • 基金项目: 北京市自然科学基金(批准号: 7152089)资助的课题.
      Corresponding author: Liu Hai-Xia, liuhx08@buaa.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Beijing, China (Grant No.7152089).
    [1]

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese) [尹伟红, 韩勤, 杨晓红 2012 物理学报 61 248502]

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [3]

    Wallace P R 1947 Phys. Rev. 71 622

    [4]

    Novoselov K S, Geim A K, Morozov S V, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [5]

    Phaedon A 2010 Nano Lett. 10 4285

    [6]

    Zhang Q H, Han J H, Feng G Y, Xu Q X, Ding L Z, Lu X X 2012 Acta Phys. Sin. 61 214209 (in Chinese) [张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔 2012 物理学报 61 214209]

    [7]

    Gao L, Guest J R, Guisinger N P 2010 Nano Lett. 10 3512

    [8]

    Reina A, Son H, Jiao L Y, Fan B, Dresselhaus M S, Liu Z F, Kong J 2008 J. Phys. Chem. C 112 17741

    [9]

    Zeng C, Guo J, Liu X M 2014 Appl. Phys. Lett. 105 121103

    [10]

    Chen Y L, Feng X B, Hou D D 2013 Acta Phys. Sin. 62 187301 (in Chinese) [陈英良, 冯小波, 侯德东 2013 物理学报 62 187301]

    [11]

    Xia F N, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P 2009 Nat. Nanotechnol. 4 839

    [12]

    Mueller T, Xia F, Avouris P 2010 Nat. Photon. 4 297

    [13]

    Liu Y, Cheng R, Liao L, Zhou H L, Bai J W, Liu G, Liu L X, Huang Y, Duan X F 2011 Nat. Commun. 2 579

    [14]

    Yu W J, Liu Y, Zhou H L, Yin A X, Li Z, Huang Y, Duan X F 2013 Nature Nanotechnol. 8 952

    [15]

    Fang Z Y, Liu Z, Wang Y M, Pulickel M A, Peter N, Naomi J H 2012 Nano Lett. 12 3808

    [16]

    Fromherz T, Mueller T 2013 Nat. Photon. 7 892

    [17]

    Wang X M, Cheng Z Z, Xu K, Tsang H K, Xu J B 2013 Nature Photon. SI. 7 888

    [18]

    Gan X T, Shiue R J, Gao Y D, Meric I, Heinz T F, Shepard K, Hone J, Assefa S, Englund D 2013 Nat. Photon. 7 883

    [19]

    Engel M, Steiner M, Lombardo A, Ferrari A C, Lohneysen H V, Avouris P, Krupke R 2012 Nat. Commun. 3 906

    [20]

    Furchi M M, Urich A, Pospischil A, Lilley G, Unterrainer K, Detz H 2012 Nano Lett. 12 2773

    [21]

    Zhou Y 2009 M. S. Dissertation (Chengdu:University of Electronic Science and Technology of China)(in Chinese)[周勇 2009 硕士学位论文(成都: 电子科技大学)]

    [22]

    Schaub J D, Li R, Campbell J C, Schow C L, Neudeck G W, Denton J 1999 Photon. Technol. Lett. 11 1647

    [23]

    Ferreira A, Peres N M R, Ribeiro R M, Stauber T 2012 Phys. Rev. B 85 115438

    [24]

    Pepeljugoski P, Kuchta D, Kwark Y, Pleunis P, Kuyt G 2002 IEEE Photon. Technol. Lett. 14 717

  • [1]

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese) [尹伟红, 韩勤, 杨晓红 2012 物理学报 61 248502]

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [3]

    Wallace P R 1947 Phys. Rev. 71 622

    [4]

    Novoselov K S, Geim A K, Morozov S V, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [5]

    Phaedon A 2010 Nano Lett. 10 4285

    [6]

    Zhang Q H, Han J H, Feng G Y, Xu Q X, Ding L Z, Lu X X 2012 Acta Phys. Sin. 61 214209 (in Chinese) [张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔 2012 物理学报 61 214209]

    [7]

    Gao L, Guest J R, Guisinger N P 2010 Nano Lett. 10 3512

    [8]

    Reina A, Son H, Jiao L Y, Fan B, Dresselhaus M S, Liu Z F, Kong J 2008 J. Phys. Chem. C 112 17741

    [9]

    Zeng C, Guo J, Liu X M 2014 Appl. Phys. Lett. 105 121103

    [10]

    Chen Y L, Feng X B, Hou D D 2013 Acta Phys. Sin. 62 187301 (in Chinese) [陈英良, 冯小波, 侯德东 2013 物理学报 62 187301]

    [11]

    Xia F N, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P 2009 Nat. Nanotechnol. 4 839

    [12]

    Mueller T, Xia F, Avouris P 2010 Nat. Photon. 4 297

    [13]

    Liu Y, Cheng R, Liao L, Zhou H L, Bai J W, Liu G, Liu L X, Huang Y, Duan X F 2011 Nat. Commun. 2 579

    [14]

    Yu W J, Liu Y, Zhou H L, Yin A X, Li Z, Huang Y, Duan X F 2013 Nature Nanotechnol. 8 952

    [15]

    Fang Z Y, Liu Z, Wang Y M, Pulickel M A, Peter N, Naomi J H 2012 Nano Lett. 12 3808

    [16]

    Fromherz T, Mueller T 2013 Nat. Photon. 7 892

    [17]

    Wang X M, Cheng Z Z, Xu K, Tsang H K, Xu J B 2013 Nature Photon. SI. 7 888

    [18]

    Gan X T, Shiue R J, Gao Y D, Meric I, Heinz T F, Shepard K, Hone J, Assefa S, Englund D 2013 Nat. Photon. 7 883

    [19]

    Engel M, Steiner M, Lombardo A, Ferrari A C, Lohneysen H V, Avouris P, Krupke R 2012 Nat. Commun. 3 906

    [20]

    Furchi M M, Urich A, Pospischil A, Lilley G, Unterrainer K, Detz H 2012 Nano Lett. 12 2773

    [21]

    Zhou Y 2009 M. S. Dissertation (Chengdu:University of Electronic Science and Technology of China)(in Chinese)[周勇 2009 硕士学位论文(成都: 电子科技大学)]

    [22]

    Schaub J D, Li R, Campbell J C, Schow C L, Neudeck G W, Denton J 1999 Photon. Technol. Lett. 11 1647

    [23]

    Ferreira A, Peres N M R, Ribeiro R M, Stauber T 2012 Phys. Rev. B 85 115438

    [24]

    Pepeljugoski P, Kuchta D, Kwark Y, Pleunis P, Kuyt G 2002 IEEE Photon. Technol. Lett. 14 717

  • [1] 鹿利单, 祝连庆, 曾周末, 崔一平, 张东亮, 袁配. 基于硅基光子器件的Fano共振研究进展. 物理学报, 2021, 70(3): 034204. doi: 10.7498/aps.70.20200550
    [2] 赵一默, 黄志伟, 彭仁苗, 徐鹏鹏, 吴强, 毛亦琛, 余春雨, 黄巍, 汪建元, 陈松岩, 李成. 超薄介质插层调制的氧化铟锡/锗肖特基光电探测器. 物理学报, 2021, 70(17): 178506. doi: 10.7498/aps.70.20210138
    [3] 朱一帆, 耿滔. 谐振腔内的高质量圆对称艾里光束的产生方法. 物理学报, 2020, 69(1): 014205. doi: 10.7498/aps.69.20191088
    [4] 赵宏宇, 王頔, 魏智, 金光勇. 毫秒脉冲激光致硅光电二极管电学损伤的有限元分析及实验研究. 物理学报, 2017, 66(10): 104203. doi: 10.7498/aps.66.104203
    [5] 梁振江, 刘海霞, 牛燕雄, 刘凯铭, 尹贻恒. THz谐振腔型石墨烯光电探测器的设计. 物理学报, 2016, 65(16): 168101. doi: 10.7498/aps.65.168101
    [6] 庄煜阳, 周雯, 季珂, 陈鹤鸣. 一种双反射壁型二维光子晶体窄带滤波器. 物理学报, 2015, 64(22): 224202. doi: 10.7498/aps.64.224202
    [7] 李培, 王辅忠, 张丽珠, 张光璐. 左手介质对谐振腔谐振频率的影响. 物理学报, 2015, 64(12): 124103. doi: 10.7498/aps.64.124103
    [8] 杨丹, 张丽, 杨盛谊, 邹炳锁. 基于垂直晶体管结构的低电压并五苯光电探测器. 物理学报, 2015, 64(10): 108503. doi: 10.7498/aps.64.108503
    [9] 张宣妮, 张淳民, 艾晶晶. 四分束风成像偏振干涉仪信噪比的研究. 物理学报, 2013, 62(3): 030701. doi: 10.7498/aps.62.030701
    [10] 王五松, 张利伟, 冉佳, 张冶文. 微波频段表面等离子激元波导滤波器的实验研究. 物理学报, 2013, 62(18): 184203. doi: 10.7498/aps.62.184203
    [11] 霍文娟, 谢红云, 梁松, 张万荣, 江之韵, 陈翔, 鲁东. 单载流子传输的双异质结光敏晶体管探测器的研究. 物理学报, 2013, 62(22): 228501. doi: 10.7498/aps.62.228501
    [12] 雷朝军, 喻胜, 李宏福, 牛新建, 刘迎辉, 候慎勇, 张天钟. 缓变回旋管谐振腔研究. 物理学报, 2012, 61(18): 180202. doi: 10.7498/aps.61.180202
    [13] 方进勇, 黄惠军, 张治强, 黄文华, 江伟华. 基于圆柱谐振腔的高功率微波脉冲压缩系统. 物理学报, 2011, 60(4): 048404. doi: 10.7498/aps.60.048404
    [14] 柏宁丰, 洪玮, 孙小菡. 复合缺陷型电磁帯隙谐振腔. 物理学报, 2011, 60(1): 018401. doi: 10.7498/aps.60.018401
    [15] 刘畅, 罗尧天, 唐昌建, 刘濮鲲. 回旋管光子带隙谐振腔冷腔电磁模式分析. 物理学报, 2009, 58(12): 8174-8179. doi: 10.7498/aps.58.8174
    [16] 刘漾, 巩华荣, 魏彦玉, 宫玉彬, 王文祥, 廖复疆. 有效抑制光子晶体加载矩形谐振腔中模式竞争的方法. 物理学报, 2009, 58(11): 7845-7851. doi: 10.7498/aps.58.7845
    [17] 杨 锐, 谢拥军, 王 鹏, 杨同敏. 含有左手介质双层基底的亚波长谐振腔微带天线研究. 物理学报, 2007, 56(8): 4504-4508. doi: 10.7498/aps.56.4504
    [18] 罗 雄, 廖 成, 孟凡宝, 张运俭. 同轴虚阴极谐振效应研究. 物理学报, 2006, 55(11): 5774-5778. doi: 10.7498/aps.55.5774
    [19] 张 军, 钟辉煌. 高功率O型慢波器件的纵向模式选择研究. 物理学报, 2005, 54(1): 206-210. doi: 10.7498/aps.54.206
    [20] 程愿应, 王又青, 胡 进, 李家熔. 一种新颖的用于光腔模式及光束传输模拟的特征向量法. 物理学报, 2004, 53(8): 2576-2582. doi: 10.7498/aps.53.2576
计量
  • 文章访问数:  5544
  • PDF下载量:  483
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-28
  • 修回日期:  2016-03-27
  • 刊出日期:  2016-07-05

/

返回文章
返回