搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于合成波长法的飞秒激光外差干涉测距方法

廖磊 易旺民 杨再华 吴冠豪

引用本文:
Citation:

基于合成波长法的飞秒激光外差干涉测距方法

廖磊, 易旺民, 杨再华, 吴冠豪

Synthetic-wavelength based absolute distance measurement using heterodyne interferometry of a femtosecond laser

Liao Lei, Yi Wang-Min, Yang Zai-Hua, Wu Guan-Hao
PDF
导出引用
  • 本文提出了一种基于合成波长法的飞秒激光外差干涉测距方法. 系统采用两个带通滤波器产生两个具有一定波长差的单波长, 用于产生合成波长. 本方法结构简单, 能量利用率高. 与双频激光干涉仪在40 mm范围内的比对结果表明, 该方法比对残差的标准差为91 nm.
    Large-scale and high precision absolute distance measurement is essential in aerospace technology and advanced manufacturing. Traditional method of measuring distance cannot meet this requirement. Since the advent of optical frequency comb, it has brought a revolutionary breakthrough to absolute distance measurement. In the past decade, there were proposed many methods to measure long absolute distances with high accuracy. Especially, the simple method of using adjacent pulse-to-pulse distance as a ruler for distance measurement has been widely used. The accuracy of this method depends mainly on the knowledge of relative positions of the two overlapped pulses, i.e., pulse-to-pulse alignment. In our previous study, we have proposed a heterodyne interferometer based on synthetic wavelength method with femtosecond laser. The synthetic wavelength is derived from the virtual second harmonic and the real second harmonic, and the real second harmonic is produced by a piece of periodically poled LiNbO3 (PPLN) crystal. However, the second harmonic generation system makes the system complicated, and causes a great optical energy loss. In order to solve this problem, we generate the synthetic wavelength by two spatial band-pass filters in our present study, which can simplify the system greatly. Moreover, we can reduce the optical energy loss and tune the synthetic wavelength by controlling the angle of the filter. The synthetic wavelength used in the present system is 71.39 m. The interferometric phase of the synthetic wavelength is used as a mark for the pulse-to-pulse alignment. In order to reduce the influences of air disturbance and temperature variation, we set up a thermal-insulated cover for the interferometer to stabilize the environment in the system. By using this cover, the optical path length difference of the system in 450 s can be reduced from 8.56 m to 0.21 m. To demonstrate the efficacy of the method described above, the target mirror is moved by eight steps in steps of 5 mm. We compare the measurement results with those obtained by a commercial interferometer, and the residual error is less than 100 nm. Since the measurement range is larger than our previous study, the relative accuracy is better than the previous system. In conclusion, we demonstrate a synthetic-wavelength based absolute distance measurement by using heterodyne interferometry of a femtosecond laser. Two spatial band-pass filters are used to generate the synthetic wavelength, which can simplify the system. The comparison results show that the system has an accuracy better than 100 nm in a displacement of 40 mm. The accuracy of the experimental system can be further improved by making the common-path of the two interferometers longer, locking the fceo to the atomic clock and sampling the data synchronously.
      通信作者: 吴冠豪, guanhaowu@mail.tsinghua.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61575105)、清华大学自主科研项目(批准号:20151080460)、航天器高精度测量实验室基金和瞬态光学与光子技术国家重点实验室开放基金(批准号:SKLST201406)资助的课题.
      Corresponding author: Wu Guan-Hao, guanhaowu@mail.tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61575105), Tsinghua University Initiative Scientific Research Program, China (Grant No. 20151080460), the Foundation of the Laboratory of High-accuracy Measurement of Spacecraft, and the Funding of State Key Laboratory of Transient Optics and Photonics, China (Grant No. SKLST201406).
    [1]

    Huang B, Feng M, Chen X D, et al. 2009 Laser J. 30 16 (in Chinese) [黄保, 冯鸣, 陈新东等 2009 激光杂志 30 16]

    [2]

    Cao S Y, Meng F, Lin B K, Fang Z J, Li T C 2012 Acta Phys. Sin. 61 134205 (in Chinese) [曹士英, 孟飞, 林百科, 方占军, 李天初 2012 物理学报 61 134205]

    [3]

    Ye J 2004 Opt. Lett. 29 1153

    [4]

    Cui M, Schouten R N, Bhattacharya N, Berg S A 2008 J. Eur. Opt. Soc. -Rapid 3 08003

    [5]

    Balling P, Kren P, Masika P, van den Berg S A 2009 Opt. Express 17 9300

    [6]

    Cui M, Zeitouny M G, van den Berg S A, Urbach H P, Braat J J M 2009 Opt. Lett. 34 1982

    [7]

    Lee J, Kim Y J, Lee K, Lee S, Kim S W 2010 Nat. Photonics 4 716

    [8]

    Lee J, Lee K, Lee S, Kim S, Kim Y 2012 Meas. Sci. Technol. 23 65203

    [9]

    Schuhler N, Salvade Y, Leveque S, Dandliker R, Holzwarth R 2006 Opt. Lett. 31 3101

    [10]

    Doloca N R, Meiners-Hagen K, Wedde M, Pollinger F, Abou-Zeid A 2010 Meas. Sci. Technol. 21 115302

    [11]

    Minoshima K, Matsumoto H 2000 Appl. Opt. 39 5512

    [12]

    Hyun S, Kim Y, Kim Y, Jin J, Kim S 2009 Meas. Sci. Technol. 20 95302

    [13]

    van den Berg S A, Persijn S T, Kok G, Zeitouny M G, Bhattacharya N 2012 Phys. Rev. Lett. 108 183901

    [14]

    Joo K, Kim S 2006 Opt. Express 14 5954

    [15]

    Joo K, Kim S 2008 Opt. Express 16 19799

    [16]

    Xia H, Zhang C 2010 Opt. Express 18 4118

    [17]

    Wu H Z, Cao S Y, Zhang F M, Qu X H 2015 Acta Phys. Sin. 64 020601 (in Chinese) [吴翰钟, 曹士英, 张福民, 曲兴华 2015 物理学报 64 020601]

    [18]

    Liu T Y, Zhang F M, Wu H Z, Li J S, Shi Y Q, Qu X H 2016 Acta Phys. Sin. 65 020601 (in Chinese) [刘亭洋, 张福民, 吴翰钟, 李建双, 石永强, 曲兴华 2016 物理学报 65 020601]

    [19]

    Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nat. Photonics 3 351

    [20]

    Liu T, Newbury N R, Coddington I 2011 Opt. Express 19 18501

    [21]

    Lee J, Han S, Lee K, Kim E, Bae S, Lee S, Kim S, Kim Y 2013 Meas. Sci. Technol. 24 45201

    [22]

    Wu G, Zhou Q, Shen L, Ni K, Zeng X, Li Y 2014 Appl. Phys. Express 24 106602

    [23]

    Wu G, Xiong S, Ni K, Zhu Z, Zhou Q 2015 Opt. Express 23 32044

    [24]

    Wu G, Takahashi M, Inaba H, Minoshima K 2013 Opt. Lett. 38 2140

    [25]

    Wu G, Arai K, Takahashi M, Inaba H, Minoshima K 2013 Meas. Sci. Technol. 24 15203

    [26]

    Wu G, Takahashi M, Arai K, Inaba H, Minoshima K 2013 Sci. Rep. 3 1894

    [27]

    Edln B 1966 Metrologia 2 71

    [28]

    Bnsch G, Potulski E 1998 Metrologia 35 133

    [29]

    Falaggis K, Towers D P, Towers C E M 2012 Appl. Opt. 51 6471

  • [1]

    Huang B, Feng M, Chen X D, et al. 2009 Laser J. 30 16 (in Chinese) [黄保, 冯鸣, 陈新东等 2009 激光杂志 30 16]

    [2]

    Cao S Y, Meng F, Lin B K, Fang Z J, Li T C 2012 Acta Phys. Sin. 61 134205 (in Chinese) [曹士英, 孟飞, 林百科, 方占军, 李天初 2012 物理学报 61 134205]

    [3]

    Ye J 2004 Opt. Lett. 29 1153

    [4]

    Cui M, Schouten R N, Bhattacharya N, Berg S A 2008 J. Eur. Opt. Soc. -Rapid 3 08003

    [5]

    Balling P, Kren P, Masika P, van den Berg S A 2009 Opt. Express 17 9300

    [6]

    Cui M, Zeitouny M G, van den Berg S A, Urbach H P, Braat J J M 2009 Opt. Lett. 34 1982

    [7]

    Lee J, Kim Y J, Lee K, Lee S, Kim S W 2010 Nat. Photonics 4 716

    [8]

    Lee J, Lee K, Lee S, Kim S, Kim Y 2012 Meas. Sci. Technol. 23 65203

    [9]

    Schuhler N, Salvade Y, Leveque S, Dandliker R, Holzwarth R 2006 Opt. Lett. 31 3101

    [10]

    Doloca N R, Meiners-Hagen K, Wedde M, Pollinger F, Abou-Zeid A 2010 Meas. Sci. Technol. 21 115302

    [11]

    Minoshima K, Matsumoto H 2000 Appl. Opt. 39 5512

    [12]

    Hyun S, Kim Y, Kim Y, Jin J, Kim S 2009 Meas. Sci. Technol. 20 95302

    [13]

    van den Berg S A, Persijn S T, Kok G, Zeitouny M G, Bhattacharya N 2012 Phys. Rev. Lett. 108 183901

    [14]

    Joo K, Kim S 2006 Opt. Express 14 5954

    [15]

    Joo K, Kim S 2008 Opt. Express 16 19799

    [16]

    Xia H, Zhang C 2010 Opt. Express 18 4118

    [17]

    Wu H Z, Cao S Y, Zhang F M, Qu X H 2015 Acta Phys. Sin. 64 020601 (in Chinese) [吴翰钟, 曹士英, 张福民, 曲兴华 2015 物理学报 64 020601]

    [18]

    Liu T Y, Zhang F M, Wu H Z, Li J S, Shi Y Q, Qu X H 2016 Acta Phys. Sin. 65 020601 (in Chinese) [刘亭洋, 张福民, 吴翰钟, 李建双, 石永强, 曲兴华 2016 物理学报 65 020601]

    [19]

    Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nat. Photonics 3 351

    [20]

    Liu T, Newbury N R, Coddington I 2011 Opt. Express 19 18501

    [21]

    Lee J, Han S, Lee K, Kim E, Bae S, Lee S, Kim S, Kim Y 2013 Meas. Sci. Technol. 24 45201

    [22]

    Wu G, Zhou Q, Shen L, Ni K, Zeng X, Li Y 2014 Appl. Phys. Express 24 106602

    [23]

    Wu G, Xiong S, Ni K, Zhu Z, Zhou Q 2015 Opt. Express 23 32044

    [24]

    Wu G, Takahashi M, Inaba H, Minoshima K 2013 Opt. Lett. 38 2140

    [25]

    Wu G, Arai K, Takahashi M, Inaba H, Minoshima K 2013 Meas. Sci. Technol. 24 15203

    [26]

    Wu G, Takahashi M, Arai K, Inaba H, Minoshima K 2013 Sci. Rep. 3 1894

    [27]

    Edln B 1966 Metrologia 2 71

    [28]

    Bnsch G, Potulski E 1998 Metrologia 35 133

    [29]

    Falaggis K, Towers D P, Towers C E M 2012 Appl. Opt. 51 6471

  • [1] 梁旭, 林嘉睿, 吴腾飞, 赵晖, 邾继贵. 重复频率倍增光频梳时域互相关绝对测距. 物理学报, 2022, 71(9): 090602. doi: 10.7498/aps.71.20212073
    [2] 王国超, 李星辉, 颜树华, 谭立龙, 管文良. 基于飞秒光梳多路同步锁相的多波长干涉实时绝对测距及其非模糊度量程分析. 物理学报, 2021, 70(4): 040601. doi: 10.7498/aps.70.20201225
    [3] 徐昕阳, 赵海涵, 钱治文, 刘超, 翟京生, 吴翰钟. 动态啁啾脉冲干涉的快速绝对距离测量. 物理学报, 2021, 70(22): 220601. doi: 10.7498/aps.70.20202149
    [4] 赵显宇, 曲兴华, 陈嘉伟, 郑继辉, 王金栋, 张福民. 一种基于电光调制光频梳光谱干涉的绝对测距方法. 物理学报, 2020, 69(9): 090601. doi: 10.7498/aps.69.20200081
    [5] 孔新新, 张文喜, 才啟胜, 伍洲, 戴玉, 相里斌. 基于多光束混合外差干涉的相位增强技术研究. 物理学报, 2020, 69(19): 190601. doi: 10.7498/aps.69.20200281
    [6] 谢田元, 王菊, 王子雄, 马闯, 于洋, 李天宇, 方杰, 于晋龙. 基于交替起振光电振荡器的大量程高精度绝对距离测量技术. 物理学报, 2019, 68(13): 130601. doi: 10.7498/aps.68.20190238
    [7] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散. 物理学报, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [8] 陈嘉伟, 王金栋, 曲兴华, 张福民. 光频梳频域干涉测距主要参数分析及一种改进的数据处理方法. 物理学报, 2019, 68(19): 190602. doi: 10.7498/aps.68.20190836
    [9] 丁武文, 孙利群. 相敏式激光啁啾色散光谱技术在高吸收度情况下的应用. 物理学报, 2017, 66(12): 120601. doi: 10.7498/aps.66.120601
    [10] 孙青, 杨奕, 邓玉强, 孟飞, 赵昆. 利用非锁定飞秒激光实现太赫兹频率的精密测量. 物理学报, 2016, 65(15): 150601. doi: 10.7498/aps.65.150601
    [11] 刘亭洋, 张福民, 吴翰钟, 李建双, 石永强, 曲兴华. 光学频率梳啁啾干涉实现绝对距离测量. 物理学报, 2016, 65(2): 020601. doi: 10.7498/aps.65.020601
    [12] 刘欢, 曹士英, 孟飞, 林百科, 方占军. 覆盖可见光波长的掺Er光纤飞秒光学频率梳. 物理学报, 2015, 64(9): 094204. doi: 10.7498/aps.64.094204
    [13] 吴翰钟, 曹士英, 张福民, 曲兴华. 光学频率梳基于光谱干涉实现绝对距离测量. 物理学报, 2015, 64(2): 020601. doi: 10.7498/aps.64.020601
    [14] 王盟盟, 权润爱, 邰朝阳, 侯飞雁, 刘涛, 张首刚, 董瑞芳. 通信波长频率一致纠缠光源的频谱测量. 物理学报, 2014, 63(19): 194206. doi: 10.7498/aps.63.194206
    [15] 吴翰钟, 曹士英, 张福民, 邢书剑, 曲兴华. 一种光学频率梳绝对测距的新方法. 物理学报, 2014, 63(10): 100601. doi: 10.7498/aps.63.100601
    [16] 王国超, 颜树华, 杨俊, 林存宝, 杨东兴, 邹鹏飞. 一种双光梳多外差大尺寸高精度绝对测距新方法的理论分析. 物理学报, 2013, 62(7): 070601. doi: 10.7498/aps.62.070601
    [17] 吴学健, 尉昊赟, 朱敏昊, 张继涛, 李岩. 基于飞秒光频梳的双频He-Ne激光器频率测量. 物理学报, 2012, 61(18): 180601. doi: 10.7498/aps.61.180601
    [18] 张丽琼, 李岩, 朱敏昊, 张继涛. 法-珀干涉绝对距离测量中的声光移频器双通道配置方法. 物理学报, 2012, 61(18): 180701. doi: 10.7498/aps.61.180701
    [19] 孟飞, 曹士英, 蔡岳, 王贵重, 曹建平, 李天初, 方占军. 光纤飞秒光学频率梳的研制及绝对光学频率测量. 物理学报, 2011, 60(10): 100601. doi: 10.7498/aps.60.100601
    [20] 方占军, 王 强, 王民明, 孟 飞, 林百科, 李天初. 飞秒光梳和碘稳频532nm Nd:YAG激光频率的测量. 物理学报, 2007, 56(10): 5684-5690. doi: 10.7498/aps.56.5684
计量
  • 文章访问数:  6050
  • PDF下载量:  407
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-01
  • 修回日期:  2016-04-12
  • 刊出日期:  2016-07-05

/

返回文章
返回