搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2,7-二辛基[1]苯并噻吩并[3,2-b]苯并噻吩在Cu(100)上的吸附生长以及能级结构演化

张宇河 牛冬梅 吕路 谢海鹏 朱孟龙 张红 刘鹏 曹宁通 高永立

引用本文:
Citation:

2,7-二辛基[1]苯并噻吩并[3,2-b]苯并噻吩在Cu(100)上的吸附生长以及能级结构演化

张宇河, 牛冬梅, 吕路, 谢海鹏, 朱孟龙, 张红, 刘鹏, 曹宁通, 高永立

Adsorption, film growth, and electronic structures of 2,7-dioctyl[1]benzothieno-[3,2-b][1]benzothiophene (C8-BTBT) on Cu (100)

Zhang Yu-He, Niu Dong-Mei, Lü Lu, Xie Hai-Peng, Zhu Meng-Long, Zhang Hong, Liu Peng, Cao Ning-Tong, Gao Yong-Li
PDF
导出引用
  • 结合紫外光电子能谱(UPS),X射线光电子能谱(XPS)、原子力显微镜(AFM)和掠入射X 射线衍射谱(GIXRD)等实验手段,系统研究了2,7-二辛基[1]苯并噻吩并[3,2-b]苯并噻吩在Cu(100)基底上的吸附、生长过程以及界面能级结构. 发现第一层的分子平躺吸附于Cu(100)上形成稳定的物理吸附. 随膜厚增加,分子取向转为直立于薄膜平面,生长模式转为岛状生长模式. 分子取向的变化导致大于16 薄膜的能级结构发生变化. 直立取向的分子在表面形成由内向外的电偶极层,引起真空能级下降,功函数降低;而轨道电离的各向异性使得分子从平躺到直立时UPS得到的分子最高占据轨道(HOMO)峰型发生变化,且HOMO起始边向深结合能端移动. 整体上随着膜厚的增加,真空能级向下弯曲,HOMO下移,电离能则先减小后增大. 下移的能带结构利于电子从界面向表面的迁移以及空穴从表面向界面的迁移.
    Using ultraviolet photoemission spectroscopy (UPS), X-ray photoemission spectroscopy (XPS), atomic force microscopy (AFM), and grazing X-ray diffraction measurement(GIXRD), we systematically investigate the correlations of interface energy level structure, film growth and the molecular orientation of 2, 7-dioctyl[1]benzothieno-[3, 2-b][1]benzothiophene (C8-BTBT) on Cu(100). We find that the adsorption of the first layer of C8-BTBT molecules on Cu(100) is a stable physical one, and there is no chemical shift of the S 2p peaks of XPS and the ratio of the output of C to that of S is the same as the stoichiometric value of the molecular C8-BTBT. The heights of the steps of the upper layers of C8-BTBT in the AFM images are ~ 30 , close to the length of the molecular long c-axis, indicating the standing-up configuration of the upper molecules. AFM image shows that the upper molecules tend to grow into islands while the bottom molecules tend to grow into layer, suggesting an Stranski-Krastanov growth mode of multilayer C8-BTBT on Cu(100). The GIXRD shows an out-of-plane period of 30.21 , which consistently proves the standing-up configuration of the outer molecule layer. There is an electric dipole of 0.41 eV at the very interface pointing from the substrate copper to C8-BTBT, which will reduce the barrier for electron transport and increase the barrier for hole transport from Cu to C8-BTBT. The vacuum level (Evac) starts to bend downward after 16 deposition, and with the increase of the thickness of the film, a total downward shift of 0.42 eV is observed. The downward shift is ascribed to the changing of molecular orientation from lying down before 16 to standing up after 16 , which establishes an outward-pointing layer of C-H bonds and accordingly forms a dipole layer depressing the surface barrier. The shape and leading edge of the hightest occupied molecular orbit (HOMO) also change with the increase of film thickness. These changes are due to the anisotropy of electron ionization from molecular orbit. The total downward shift of the HOMO is about 0.63 eV. The downward bending of 0.42 eV for Evac and 0.63 eV for HOMO with increasing film thickness lead to a slightly decreasing ionization potential (IP) about 0.1 eV before 32 and then an increasing IP about 0.31 eV, which finally results in a total increase of 0.21 eV for IP. The bending electronic structures facilitate electron transport from interface to surface and hole transport from surface to interface. Our Investigation provides valuable information for relevant device design.
      通信作者: 牛冬梅, mayee@csu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51173205,11334014)和教育部留学回国人员科研启动基金资助的课题.
      Corresponding author: Niu Dong-Mei, mayee@csu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51173205, 11334014) and Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.
    [1]

    Oura K, Katayama M, Zotov A V, Lifshits V G, Saranin A A 2003 Surface Science (Berlin: Springer) pp195-227

    [2]

    Zhou Y S, Peng J, Wang E B, Zhang L J 1998 Transition Met. Chem. 23 125

    [3]

    Klauk H, Zschieschang U, Pflaum J, Halik M 2007 Nature 445 745

    [4]

    Sanvito S 2011 Chem. Soc. Rev. 40 3336

    [5]

    Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B 1990 Nature 347 539

    [6]

    Tang C W, VanSlyke S A I 1987 Appl. Phys. Lett. 51 913

    [7]

    Yang F, Shtein M, Forrest S R {2005 Nature Mater. 4 37

    [8]

    Jurchescu O D, Baas J, Palstra T T M 2004 Appl. Phys. Lett. 84 3061

    [9]

    Takeya J, Yamagishi M, Tominari Y, Hirahara R, Nakazawa Y, Nishikawa T, Kawase T, Shimoda T, Ogawa S 2007 Appl. Phys. Lett. 90 102120

    [10]

    Yamamoto T, Takimiya K 2007 J. Am. Chem. Soc. 129 2224

    [11]

    Koezuka H, Tsumura A, Ando T 1987 Synth. Met. 18 699

    [12]

    Yuan Y B, Giri G, Ayzner A L, Zoombelt A P, Mannsfeld S C B, Chen J H, Nordlund D, Toney M F, Huang J S, Bao Z N 2014 Nat. Commun. 5 3005

    [13]

    Schweicher G, Lemaur V, Niebel C, Ruzi C, Diao Y, Goto O, Lee W Y, Kim Y, Arlin J B, Karpinska J 2015 Adv. Mater. 27 3066

    [14]

    Wang Y F, Zou S F, Gao J H, Zhang H R, Yang C D, Xie H, Fang R R, Li H X, Hu W P 2015 Chem. Commun. 51 11961

    [15]

    Li Y, Liu C, Kumatani A, Darmawan P, Minari T, Tsukagoshi K 2012 Org. Electron. 13 264

    [16]

    Liu C, Minari T, Lu X B, Kumatani A, Takimiya K, Tsukagoshi K 2011 Adv. Mater. 23 435

    [17]

    Minemawari H, Yamada T, Matsui H, Tsutsumi J, Haas S, Chiba R, Kumai R, Hasegawa T 2011 Nature 475 364

    [18]

    Chen X L, Lovinger A J, Bao Z N, Sapjeta J 2001 Chem. Mater. 13 1341

    [19]

    Kobayashi N, Hosoi S, Koshitani N, Murakami D, Shirasawa R, Kudo Y, Hobara D 2013 J. Chem. Phys. 139 014707

    [20]

    He D W, Zhang Y H, Wu Q S, Xu R, Nan H Y, Liu J F, Yao J J, Wang Z L, Yuan S J, Li Y, Shi Y, Wang J L, Ni Z H, He L, Miao F, Song F Q, Xu H X, Watanabe K, Taniguchi T, Xu J B, Wang X R 2014 Nat. Commun. 5 5162

    [21]

    Kotsuki K, Tanaka H, Obata S, Stauss S, Terashima K, Saiki K 2014 Appl. Phys. Lett. 104 233306

    [22]

    Zhang H, Niu D M, L L, Xie H P, Zhang Y H, Liu P, Huang H, Gao Y L 2016 Acta Phys. Sin. 65 047902 (in Chinese) [张红, 牛冬梅, 吕路, 谢海鹏, 张宇河, 刘鹏, 黄寒, 高永立 2016 物理学报 65 047902]

    [23]

    Hou X L, Gao M B 1997 Acta Phys. -Chim. Sin. 13 1044 (in Chinese) [侯相林, 高荫本 1997 物理化学学报 13 1044]

    [24]

    Zhao L, Chen S, Gao J S, Chen Y {2010 J. Mol. Sci. 26 18 (in Chinese) [赵亮, 陈燕, 高金森, 陈玉 2010 分子科学学报 26 18]

    [25]

    Orita H, Itoh N 2004 Surf. Sci. 550 177

    [26]

    Blakesley J C, Greenham N C 2009 J. Appl. Phys. 106 34507

    [27]

    Lange I, Blakesley J C, Frisch J, Vollmer A, Koch N, Neher D 2011 Phys. Rev. Lett. 106 216402

    [28]

    Nishi T, Kanai K, Ouchi Y, Willis M R, Seki K 2006 Chem. Phys. 325 121

    [29]

    Hecht M 1990 Phys. Rev. B 41 7918

    [30]

    Chen W, Huang H, Chen S, Gao X Y, Wee A T S 2008 J. Phys. Chem. C 112 5036

    [31]

    Wang C G, Irfan I, Turinske A J, Gao Y L 2012 Thin Solid Films 525 64

    [32]

    Chen W, Huang H, Chen, S, Huang Y L, Gao X Y, Wee A T S 2008 Chem. Mater. 20 7017

    [33]

    Yamane H, Yabuuchi Y, Fukagawa H, Kera S, Okudaira K K, Ueno N 2006 J. Appl. Phys. 99 093705

    [34]

    Xiao K, Deng W, Keum J K, Yoon M, Vlassiouk I V, Clark K W, Li A P, Kravchenko I I, Gu G, Payzant E A, Sumpter B G, Smith S C, Browning J F, Geohegan D B 2013 J. Am. Chem. Soc. 135 3680

    [35]

    Zhong J Q, Mao H Y, Wang R, Qi D C, Cao L, Wang Y Z, Chen W 2011 J. Phys . Chem. C 115 23922

    [36]

    Milligan P K, Murphy B, Lennon D, Cowie B C C, Kadodwala M {2001 J. Phys. Chem. B 105 140

    [37]

    Richardson N, Campuzano J 1981 Vacuum 31 449

    [38]

    Schoofs G R, Preston R E, Benziger J B 1985 Langmuir 1 313

    [39]

    Hunter C A, Sanders J K M 1990 J. Am. Chem. Soc. 112 5525

    [40]

    Ogi Y, Kohguchi H S, Niu D M, Ohshimo K, Suzuki T 2009 J. Phys. Chem. A 113 14536

    [41]

    Niu D M, Ogi Y, Suzuki Y I, Suzuki T 2011 J. Phys. Chem. A 115 2096

  • [1]

    Oura K, Katayama M, Zotov A V, Lifshits V G, Saranin A A 2003 Surface Science (Berlin: Springer) pp195-227

    [2]

    Zhou Y S, Peng J, Wang E B, Zhang L J 1998 Transition Met. Chem. 23 125

    [3]

    Klauk H, Zschieschang U, Pflaum J, Halik M 2007 Nature 445 745

    [4]

    Sanvito S 2011 Chem. Soc. Rev. 40 3336

    [5]

    Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B 1990 Nature 347 539

    [6]

    Tang C W, VanSlyke S A I 1987 Appl. Phys. Lett. 51 913

    [7]

    Yang F, Shtein M, Forrest S R {2005 Nature Mater. 4 37

    [8]

    Jurchescu O D, Baas J, Palstra T T M 2004 Appl. Phys. Lett. 84 3061

    [9]

    Takeya J, Yamagishi M, Tominari Y, Hirahara R, Nakazawa Y, Nishikawa T, Kawase T, Shimoda T, Ogawa S 2007 Appl. Phys. Lett. 90 102120

    [10]

    Yamamoto T, Takimiya K 2007 J. Am. Chem. Soc. 129 2224

    [11]

    Koezuka H, Tsumura A, Ando T 1987 Synth. Met. 18 699

    [12]

    Yuan Y B, Giri G, Ayzner A L, Zoombelt A P, Mannsfeld S C B, Chen J H, Nordlund D, Toney M F, Huang J S, Bao Z N 2014 Nat. Commun. 5 3005

    [13]

    Schweicher G, Lemaur V, Niebel C, Ruzi C, Diao Y, Goto O, Lee W Y, Kim Y, Arlin J B, Karpinska J 2015 Adv. Mater. 27 3066

    [14]

    Wang Y F, Zou S F, Gao J H, Zhang H R, Yang C D, Xie H, Fang R R, Li H X, Hu W P 2015 Chem. Commun. 51 11961

    [15]

    Li Y, Liu C, Kumatani A, Darmawan P, Minari T, Tsukagoshi K 2012 Org. Electron. 13 264

    [16]

    Liu C, Minari T, Lu X B, Kumatani A, Takimiya K, Tsukagoshi K 2011 Adv. Mater. 23 435

    [17]

    Minemawari H, Yamada T, Matsui H, Tsutsumi J, Haas S, Chiba R, Kumai R, Hasegawa T 2011 Nature 475 364

    [18]

    Chen X L, Lovinger A J, Bao Z N, Sapjeta J 2001 Chem. Mater. 13 1341

    [19]

    Kobayashi N, Hosoi S, Koshitani N, Murakami D, Shirasawa R, Kudo Y, Hobara D 2013 J. Chem. Phys. 139 014707

    [20]

    He D W, Zhang Y H, Wu Q S, Xu R, Nan H Y, Liu J F, Yao J J, Wang Z L, Yuan S J, Li Y, Shi Y, Wang J L, Ni Z H, He L, Miao F, Song F Q, Xu H X, Watanabe K, Taniguchi T, Xu J B, Wang X R 2014 Nat. Commun. 5 5162

    [21]

    Kotsuki K, Tanaka H, Obata S, Stauss S, Terashima K, Saiki K 2014 Appl. Phys. Lett. 104 233306

    [22]

    Zhang H, Niu D M, L L, Xie H P, Zhang Y H, Liu P, Huang H, Gao Y L 2016 Acta Phys. Sin. 65 047902 (in Chinese) [张红, 牛冬梅, 吕路, 谢海鹏, 张宇河, 刘鹏, 黄寒, 高永立 2016 物理学报 65 047902]

    [23]

    Hou X L, Gao M B 1997 Acta Phys. -Chim. Sin. 13 1044 (in Chinese) [侯相林, 高荫本 1997 物理化学学报 13 1044]

    [24]

    Zhao L, Chen S, Gao J S, Chen Y {2010 J. Mol. Sci. 26 18 (in Chinese) [赵亮, 陈燕, 高金森, 陈玉 2010 分子科学学报 26 18]

    [25]

    Orita H, Itoh N 2004 Surf. Sci. 550 177

    [26]

    Blakesley J C, Greenham N C 2009 J. Appl. Phys. 106 34507

    [27]

    Lange I, Blakesley J C, Frisch J, Vollmer A, Koch N, Neher D 2011 Phys. Rev. Lett. 106 216402

    [28]

    Nishi T, Kanai K, Ouchi Y, Willis M R, Seki K 2006 Chem. Phys. 325 121

    [29]

    Hecht M 1990 Phys. Rev. B 41 7918

    [30]

    Chen W, Huang H, Chen S, Gao X Y, Wee A T S 2008 J. Phys. Chem. C 112 5036

    [31]

    Wang C G, Irfan I, Turinske A J, Gao Y L 2012 Thin Solid Films 525 64

    [32]

    Chen W, Huang H, Chen, S, Huang Y L, Gao X Y, Wee A T S 2008 Chem. Mater. 20 7017

    [33]

    Yamane H, Yabuuchi Y, Fukagawa H, Kera S, Okudaira K K, Ueno N 2006 J. Appl. Phys. 99 093705

    [34]

    Xiao K, Deng W, Keum J K, Yoon M, Vlassiouk I V, Clark K W, Li A P, Kravchenko I I, Gu G, Payzant E A, Sumpter B G, Smith S C, Browning J F, Geohegan D B 2013 J. Am. Chem. Soc. 135 3680

    [35]

    Zhong J Q, Mao H Y, Wang R, Qi D C, Cao L, Wang Y Z, Chen W 2011 J. Phys . Chem. C 115 23922

    [36]

    Milligan P K, Murphy B, Lennon D, Cowie B C C, Kadodwala M {2001 J. Phys. Chem. B 105 140

    [37]

    Richardson N, Campuzano J 1981 Vacuum 31 449

    [38]

    Schoofs G R, Preston R E, Benziger J B 1985 Langmuir 1 313

    [39]

    Hunter C A, Sanders J K M 1990 J. Am. Chem. Soc. 112 5525

    [40]

    Ogi Y, Kohguchi H S, Niu D M, Ohshimo K, Suzuki T 2009 J. Phys. Chem. A 113 14536

    [41]

    Niu D M, Ogi Y, Suzuki Y I, Suzuki T 2011 J. Phys. Chem. A 115 2096

  • [1] 张超江, 许洪光, 徐西玲, 郑卫军. ${\bf Ta_4C}_{ n}^{\bf -/0}$ (n = 0—4)团簇的电子结构、成键性质及稳定性. 物理学报, 2021, 70(2): 023601. doi: 10.7498/aps.70.20201351
    [2] 董晓莉, 金魁, 袁洁, 周放, 张广铭, 赵忠贤. FeSe基超导单晶与薄膜研究新进展:自旋向列序、电子相分离及高临界参数. 物理学报, 2018, 67(20): 207410. doi: 10.7498/aps.67.20181638
    [3] 吴圣钰, 张耘, 柏红梅, 梁金玲. Co,Zn共掺铌酸锂电子结构和吸收光谱的第一性原理研究. 物理学报, 2018, 67(18): 184209. doi: 10.7498/aps.67.20180735
    [4] 潘国兴, 李田, 汤国强, 张发培. 高度取向的半导体聚合物薄膜的溶液浸涂法生长及其电荷传输特性研究. 物理学报, 2017, 66(15): 156801. doi: 10.7498/aps.66.156801
    [5] 张红, 牛冬梅, 吕路, 谢海鹏, 张宇河, 刘鹏, 黄寒, 高永立. 2,7-二辛基[1]苯并噻吩并[3,2-b]苯并噻吩/Ni(100)的界面能级结构随薄膜厚度的演化. 物理学报, 2016, 65(4): 047902. doi: 10.7498/aps.65.047902
    [6] 黄超, 刘凌云, 方军, 张文华, 王凯, 高品, 徐法强. 强磁场对酞菁铁薄膜分子取向及形貌的影响. 物理学报, 2016, 65(15): 156101. doi: 10.7498/aps.65.156101
    [7] 冯小静, 郭玮, 路兴强, 姚洪斌, 李月华. 三态K2分子飞秒含时光电子能谱的理论研究. 物理学报, 2015, 64(14): 143303. doi: 10.7498/aps.64.143303
    [8] 陈仙, 王炎武, 王晓艳, 安书董, 王小波, 赵玉清. 非晶氧化钛薄膜形成过程中钛离子能量对表面结构影响的机理. 物理学报, 2014, 63(24): 246801. doi: 10.7498/aps.63.246801
    [9] 颜超, 黄莉莉, 何兴道. 入射能量对Au/Au(111)薄膜生长影响的分子动力学模拟. 物理学报, 2014, 63(12): 126801. doi: 10.7498/aps.63.126801
    [10] 张敏, 唐田田, 张朝民. NaLi分子飞秒含时光电子能谱的理论研究. 物理学报, 2014, 63(2): 023302. doi: 10.7498/aps.63.023302
    [11] 丁丁, 曾思良, 王建国, 屈世显. 磁化等离子体环境对氢原子能级结构的影响. 物理学报, 2013, 62(7): 073201. doi: 10.7498/aps.62.073201
    [12] 任树洋, 任忠鸣, 任维丽. 晶粒尺寸对气相沉积薄膜磁取向生长的影响研究. 物理学报, 2011, 60(1): 016104. doi: 10.7498/aps.60.016104
    [13] 曹亮, 张文华, 陈铁锌, 韩玉岩, 徐法强, 朱俊发, 闫文盛, 许杨, 王峰. 苝四甲酸二酐在Au(111)表面的取向生长及电子结构研究. 物理学报, 2010, 59(3): 1681-1688. doi: 10.7498/aps.59.1681
    [14] 吴海飞, 张寒洁, 廖清, 陆赟豪, 斯剑霄, 李海洋, 鲍世宁, 吴惠祯, 何丕模. Mn/PbTe(111)界面行为的光电子能谱研究. 物理学报, 2009, 58(2): 1310-1315. doi: 10.7498/aps.58.1310
    [15] 张文华, 莫 雄, 王国栋, 王立武, 徐法强, 潘海斌, 施敏敏, 陈红征, 汪 茫. 苯并咪唑苝与金属Ag的界面电子结构研究. 物理学报, 2007, 56(8): 4936-4942. doi: 10.7498/aps.56.4936
    [16] 袁勇波, 刘玉真, 邓开明, 杨金龙. SiN团簇光电子能谱的指认. 物理学报, 2006, 55(9): 4496-4500. doi: 10.7498/aps.55.4496
    [17] 葛愉成. 用光电子能谱相位确定法同时测量阿秒超紫外线XUV脉冲的频率和强度时间分布. 物理学报, 2005, 54(6): 2653-2661. doi: 10.7498/aps.54.2653
    [18] 贾文红, 武海顺. GamPn和GamP-n团簇结构及其光电子能谱的理论研究. 物理学报, 2004, 53(4): 1056-1062. doi: 10.7498/aps.53.1056
    [19] 吕斌, 吕萍, 施申蕾, 张建华, 唐建新, 楼辉, 何丕模, 鲍世宁. OPCOT在Ru(0001)表面上的紫外光电子能谱研究. 物理学报, 2002, 51(11): 2644-2648. doi: 10.7498/aps.51.2644
    [20] 崔大复, 王焕华, 戴守愚, 周岳亮, 陈正豪, 杨国桢, 刘凤琴, 奎热西, 钱海杰. Sb掺杂SrTio3透明导电薄膜的光电子能谱研究. 物理学报, 2002, 51(1): 187-191. doi: 10.7498/aps.51.187
计量
  • 文章访问数:  5266
  • PDF下载量:  301
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-29
  • 修回日期:  2016-05-31
  • 刊出日期:  2016-08-05

/

返回文章
返回